Problem sheet 1, Information Theory, HT 2022
 Designed for the first tutorial class

Question 1 We are given a deck of n cards in order $1,2, \cdots, n$. Then a randomly chosen card is removed and placed at a random position in the deck. What is the entropy of the resulting deck of card?

Question 2 (Polling inequalities) Let $a \geq 0, b \geq 0$ are given with $a+b>0$. Show that

$$
-(a+b) \log (a+b) \leq-a \log (a)-b \log (b) \leq-(a+b) \log \left(\frac{a+b}{2}\right)
$$

and that the first inequality becomes an equality iff $a b=0$, the second inequality becomes an equality iff $a=b$.

Question 3 Let X, Y, Z be discrete random variables. Prove or provide a counterexample to the following statements:
(a) $H(X)=H(42 X)$;
(b) $H(X \mid Y) \geq H(X \mid Y, Z)$;
(c) $H(X, Y)=H(X)+H(Y)$.

Question 4 Does there exist a discrete random variable X with a distribution such that $H(X)=+\infty$? If so, describe it as explicitly as possible.

Question 5 Let \mathcal{X} be a finite set, f a real-valued function $f: \mathcal{X} \mapsto \mathbb{R}$ and fix $\alpha \in \mathbb{R}$. We want to maximise the entropy $H(X)$ of a random variable X taking values in \mathcal{X} subject to the constraint

$$
\begin{equation*}
\mathbb{E}[f(X)] \leq \alpha \tag{1}
\end{equation*}
$$

Denote by U a uniformly distributed random variable over \mathcal{X}. Prove the following optimal solutions for the maximisation.
(a) If $\alpha \in\left[\mathbb{E}[f(U)], \max _{x \in \mathcal{X}} f(x)\right]$, then the entropy is maximised subject to (1) by the uniformly distributed random variable U.
(b) If f is non-constant and $\alpha \in\left[\min _{x \in \mathcal{X}} f(x), \mathbb{E}[f(U)]\right]$, then the entropy is maximised subject to (1) by the random variable Z given by

$$
P(Z=x)=\frac{e^{\lambda f(x)}}{\sum_{y \in \mathcal{X}} e^{\lambda f(y)}} \quad \text { for } x \in \mathcal{X}
$$

where $\lambda<0$ is chosen such that $\mathbb{E}[f(Z)]=\alpha$.
(c) (Optional) Prove that under the assumptions of (b), the choice for λ is unique and we have $\lambda<0$.

Question 6 (A revision on strong law of large numbers (SLLN) in probability theory, please take this question as a reference) Let X be a real-valued random variable.
(a) Assume additionally that X is non-negative. Show that for every $x>0$, we have

$$
\mathbb{P}(X \geq x) \leq \frac{\mathbb{E}[X]}{x}
$$

(b) Let X be a random variable of mean μ and variance σ^{2}. Show that

$$
\mathbb{P}(|X-\mu|>\varepsilon) \leq \frac{\sigma^{2}}{\epsilon^{2}}
$$

(c) Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d random variables with mean μ and variance σ^{2}. Show that $\frac{1}{m} \sum_{n=1}^{\bar{m}} X_{n}$ converges to μ in probability, i.,e., for every $\varepsilon>0$,

$$
\lim _{m \rightarrow+\infty} \mathbb{P}\left(\left|\frac{1}{m} \sum_{n=1}^{m} X_{n}-\mu\right|>\epsilon\right)=0
$$

This is a weak version of SLLN. It can be strengthen by Borel-Cantelli lemma to the often-used version: $\mathbb{P}\left(\lim _{m \rightarrow+\infty} \frac{1}{m} \sum_{n=1}^{m} X_{n}=\mu\right)=1$.

Question 7 (Optional) Partition the interval [0,1] into n disjoint sub-intervals of length p_{1}, \cdots, p_{n}. Let X_{1}, X_{2}, \cdots be i.i.d. random variables, uniformly distributed on $[0,1]$, and $Z_{m}(i)$ be the number of the X_{1}, \cdots, X_{m} that lie in the $i^{t h}$ interval of the partition. Show that the random variables

$$
R_{m}=\Pi_{i=1}^{n} p_{i}^{Z_{m}(i)} \text { satisfy } \frac{1}{m} \log \left(R_{m}\right) \xrightarrow{m \rightarrow+\infty} \sum_{i=1}^{n} p_{i} \log \left(p_{i}\right) \text { with probability } 1
$$

