PROBLEM SHEET 1, INFORMATION THEORY, HT 2022
DESIGNED FOR THE FIRST TUTORIAL CLASS

Question 1 We are given a deck of n cards in order 1,2, - ,n. Then a randomly chosen card
is removed and placed at a random position in the deck. What is the entropy of the resulting
deck of card?

Answer 1 There are evenly n cards be picked up, and n places to be placed evenly. So there are
1/n? different actions with even probability 1/n? and some of them result in the same outcome as
following:

(a) The original order can be resulted by any card be picked up and placed at its original place, so
the probability of the original order is 1/n;

(b) a swap of two adjacent card can be resulted by two different operations. There are n — 1 of
these results, each with probability 2/n?.

(c) a card is moved at least 2 positions away: there are n x (n — 3) 4 2 possible results, each with
probability 1/n?.

So there are 1+ (n — 1) + (n? — 3n + 2) different results with probabilities as above, whose entropy
is

H(“deck”) = %log(n) +(n— 1)% log(n?/2) + (n* — 3n + 2)% log(n?)
= % [nlog(n) +2(n — 1)(2log(n) — 1) + (n* — 3n + 2)2log(n)]

2n —1 2n — 2
= I _—
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Question 2 (Polling inequalities) Let a > 0,b > 0 are given with @ + b > 0. Show that

a+b
2 )

—(a+b)log(a +b) < —alog(a) — blog(b) < —(a+ b) log(

and that the first inequality becomes an equality iff ab = 0, the second inequality becomes an
equality iff a = b.



Answer 2 Denote p = _%;. Divided by a + b and then add log(a + b) on all three terms, the
equalities are equivalent to

0 < —plog(p) — (1 - p) log(1 - p)) < ~lo()

which is obvious according to the first basic property of entropy.

Question 3 Let X,Y, Z be discrete random variables. Prove or provide a counterexample to
the following statements:

(a) H(X) = H(42X);
(b) H(X|Y) > H(X|Y, Z);
(c) H(X,Y)=H(X)+H(Y).

Answer 3 The first one is true : f(z) = —42z is a bijective.

The second is true: H(X|Y) — H(X|Y,Z) = I(X,Z|Y), and the interpretation by informa-
tion/surprise works.

The third is wrong: By the chain rule, H(X,Y) = H(Y|X) + H(X), and H(Y|X) = H(Y) if
and only if X, Y are independent. An easy counter example is when Y = X and H(X) > 0, we
have H(X,Y) = H(X,X) = H(X) < H(Y) + H(X).

Question 4 Does there exist a discrete random variable X with a distribution such that
H(X) = 4007 If so, describe it as explicitly as possible.

Answer 4 Obviously, H(X) < +oo for any case with finite image space. So we assume the

image space is the natural nubmers. Here is an counter example: P(X = n) = ﬁ?(n) with ¢ =

c(log(log(n
m > 0. then H(X) =3_, m[log(n log?(n))—log(c)] = 3, [n13§(n) +2 (nliéz(gn() ))] -
log(c) = +o0 since log(log(n)) — +oo and > L

n nlog(n)

= +00.



Question 5 Let X be a finite set, f a real-valued function f : X — R and fix o € R. We
want to maximise the entropy H(X) of a random variable X taking values in X subject to the
constraint

E[f(X)] <a. (1)

Denote by U a uniformly distributed random variable over . Prove the following optimal
solutions for the maximisation.

(a) If o € [E[f(U)], maxzex f(x)], then the entropy is maximised subject to (1) by the
uniformly distributed random variable U.

(b) If fis non-constant and o € [mingex f(z), E[f(U)]], then the entropy is maximised subject
o (1) by the random variable Z given by

M (@)
T e MW
where A < 0 is chosen such that E[f(Z)] = a.

for x € X.

(c) (Optional) Prove that under the assumptions of (b), the choice for A is unique and we
have A < 0.

Answer 5 (a) Since the uniform distribution achieves the maximal entropy without any con-
strained, so we just need to verify it satisfies the constraint (1), which is obvious.

(b) Recall the Gibbs' inequality that for any pmf p and g,

— Y p(x)log(p — Y plx)log(q

reX zeX

So we can try to write E[f(X)] into the form of — 3 . p(w)%’f\))+C for some constant
A < 0 and ¢ with p(+) being the pmf of X, for which we should write

M (x) = log(q(x)) + ¢(A) = NN = g(a).

With the fact that ¢ is a pmf, we have

A (@)
q(z) = =7 and ¢(A) = —log( M @)y,
S o 2
So for any A\ < 0, define the pmf ¢(z) := % then
A
Z p(x)log(q(z)) + ?

xeX
With A < 0, we have that E[f(X)] < ais equivalent to — > p(x)log(q(z)) < —Aa+c(N).
Hence H(X) < =% -y p(x)log(g(z)) < —Aa+c(A), and the equality holds iff p(x) = q(x),

. eMf () eM ()
l.e., ]P(X (L') q(ZU) W and a = Z:L“EXp(x)f(X) = ZmEX f(x)m

To make sure the existence of A < 0 such that E[f(X)] = > .y q(z)f(z) = a, we leave the
proof to part (c).



Question 5b: to show that equality constraint must be satisfied.
Ep[f(@)] < o
= ) p)f(z)<a

= - pE)f() < Ao since A < 0

= - Zp(x) log (exp ()\f(w))) < -

exp (Af(z)) exp (Af(z)) . e
<~ - ) pl@)log( =———F =) <-da+log exp (Af(z) Note ——————*— is a probability distribution
s (= o ) (Eew0rte)) Mo o)
Thus, for the solution given by the Lagrangian multiplier (shown in the class), we have

H(X)= - Zp(m) log (%) < —)da+log (Zexp ()\f(m)))

There exists a unique \ such that the equality holds and we denote it as A, i.e., >, p(z) f(z) = « (the proof is given in
question 3c). For all other X' # Ag and X' < 0 (i.e., ) p'(z) f(z) < ), we have

exp ()\'f(z')) )

Hy(X) = =Y #/(a)log (

Y, exp (/\’f(x))
/ exp (Af(2)) N ,
< - zz: p'(z)log (m) Gibb’s inequality
< =)Ao+ log (Z exp ()\f(z)))
= Hy(X) The entropy for all other A is strictly smaller than H ) (X)

Therefore, the equality holds ) p(z)f(z) = a.



(c) Denote g(A) := > cx f(x)zyixfi(;)ﬂy) Then g is a differentiable function with

M
Z flz e/\f(y) Zf Jex eAf(y) 2 Zf

zeX
= E[f(X)’] - (E[f(X)])2~

Since f is not a constant, so ¢'(A\) > 0, which means g is a strictly increasing and contin-
uous function. Furthermore, g(0) = E[f(U)], g(—o0) = mingex f(x). So g(\) = a €
(min f(x),E[f(U)]) admits a unique solution A < 0.

g\

Question 6 (A revision on strong law of large numbers (SLLN) in probability theory, please
take this question as a reference) Let X be a real-valued random variable.

(a) Assume additionally that X is non-negative. Show that for every x > 0, we have

E[X]

P(X >2x) <
(X za)< =

(b) Let X be a random variable of mean u and variance 0. Show that

2

%l 9

P(X —pl >e) < -

(c) Let (X,)n>1 be a sequence of i.i.d random variables with mean p and variance 0. Show
that % Y omy Xy converges to p in probability, i..e., for every e > 0,

1 m
lim P|=) X, = 0.
N (R O

This is a weak version of SLLN. It can be strengthen by Borel-Cantelli lemma
to the often-used version: P(limy—i00 % Yo Xp=p)=1.

Answer 6 (a) E[X]| =E[X1x>,| +E[X1x.,] > E[X1x>,] > E[zlx>,] = 2P(X > z), so
we have the inequality.

(b) Similar to part (a), for any random variable Y and constant ¢ > 0, P(|Y| > ¢) < [ ] . Apply
Y = X — p in this inequality, we get the one in the question.

(c) For any integer m, denote Yy, = = 5™ | X,, — p, then E[Y;,] = 0, Var(Y;,) = %2 Hence

m—-+00

P(|Ym| > €) < 2 ™25 0,



Question 7 (Optional) Partition the interval [0, 1] into n disjoint sub-intervals of length p1, - - - , pp,.
Let X7, Xs, -+ be i.i.d. random variables, uniformly distributed on [0,1], and Z,,(i) be the
number of the X7, ---, X,, that lie in the i*" interval of the partition. Show that the random

variables

) 1 n
R, = H?zlpizm(l) satisfy — log(R,) Mz Z p; log(p;) with probability 1.
m

i=1

Answer 7 Denote I; as the it" subinterval.
" 1 oer _
It is easy to see that Llog(Ry) = = >0 | Z,(i)log(p;) = >0, %log(m). Since

. >ioilxern .
P(limy— 400 % = p;) = 1, the conclusion follows.



