
Problem sheet 1, Information Theory, HT 2022

Designed for the first tutorial class

Question 1 We are given a deck of n cards in order 1, 2, · · · , n. Then a randomly chosen card

is removed and placed at a random position in the deck. What is the entropy of the resulting

deck of card?

Answer 1 There are evenly n cards be picked up, and n places to be placed evenly. So there are
1/n

2 di↵erent actions with even probability 1/n
2 and some of them result in the same outcome as

following:

(a) The original order can be resulted by any card be picked up and placed at its original place, so
the probability of the original order is 1/n;

(b) a swap of two adjacent card can be resulted by two di↵erent operations. There are n � 1 of
these results, each with probability 2/n

2.

(c) a card is moved at least 2 positions away: there are n⇥ (n� 3)+ 2 possible results, each with
probability 1/n

2.

So there are 1+ (n� 1) + (n
2 � 3n+2) di↵erent results with probabilities as above, whose entropy

is

H(“deck”) =
1

n
log(n) + (n� 1)

2

n2
log(n

2
/2) + (n

2 � 3n+ 2)
1

n2
log(n

2
)

=
1

n2

⇥
n log(n) + 2(n� 1)(2 log(n)� 1) + (n

2 � 3n+ 2)2 log(n)
⇤

=
2n� 1

n
log(n) +

2n� 2

n2
.

Question 2 (Polling inequalities) Let a � 0, b � 0 are given with a+ b > 0. Show that

�(a+ b) log(a+ b)  �a log(a)� b log(b)  �(a+ b) log(
a+ b

2
)

and that the first inequality becomes an equality i↵ ab = 0, the second inequality becomes an

equality i↵ a = b.
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Answer 2 Denote p =
a

a+b . Divided by a + b and then add log(a + b) on all three terms, the
equalities are equivalent to

0  �p log(p)� (1� p) log(1� p))  � log(
1

2
),

which is obvious according to the first basic property of entropy.

Question 3 Let X,Y, Z be discrete random variables. Prove or provide a counterexample to

the following statements:

(a) H(X) = H(42X);

(b) H(X|Y ) � H(X|Y, Z);

(c) H(X,Y ) = H(X) +H(Y ).

Answer 3 The first one is true : f(x) = �42x is a bijective.
The second is true: H(X|Y ) � H(X|Y, Z) = I(X,Z|Y ), and the interpretation by informa-

tion/surprise works.
The third is wrong: By the chain rule, H(X,Y ) = H(Y |X) +H(X), and H(Y |X) = H(Y ) if

and only if X,Y are independent. An easy counter example is when Y = X and H(X) > 0, we
have H(X,Y ) = H(X,X) = H(X) < H(Y ) +H(X).

Question 4 Does there exist a discrete random variable X with a distribution such that

H(X) = +1? If so, describe it as explicitly as possible.

Answer 4 Obviously, H(X) < +1 for any case with finite image space. So we assume the
image space is the natural nubmers. Here is an counter example: P(X = n) =

c
n log2(n)

with c =

1P
n n log2 n

> 0. then H(X) =
P

n
c

n log2(n)
[log(n log

2
(n))�log(c)] =

P
n

h
2c

n log(n) +
2c(log(log(n))

n log2(n)

i
�

log(c) = +1 since log(log(n)) ! +1 and
P

n
1

n log(n) = +1.
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Question 5 Let X be a finite set, f a real-valued function f : X 7! R and fix ↵ 2 R. We

want to maximise the entropy H(X) of a random variable X taking values in X subject to the

constraint

E[f(X)]  ↵. (1)

Denote by U a uniformly distributed random variable over X . Prove the following optimal

solutions for the maximisation.

(a) If ↵ 2 [E[f(U)], maxx2X f(x) ], then the entropy is maximised subject to (1) by the

uniformly distributed random variable U .

(b) If f is non-constant and ↵ 2 [minx2X f(x), E[f(U)] ], then the entropy is maximised subject

to (1) by the random variable Z given by

P (Z = x) =
e
�f(x)

P
y2X e�f(y)

for x 2 X .

where � < 0 is chosen such that E[f(Z)] = ↵.

(c) (Optional) Prove that under the assumptions of (b), the choice for � is unique and we

have � < 0.

Answer 5 (a) Since the uniform distribution achieves the maximal entropy without any con-
strained, so we just need to verify it satisfies the constraint (1), which is obvious.

(b) Recall the Gibbs’ inequality that for any pmf p and q,

�
X

x2X
p(x) log(p(x))  �

X

x2X
p(x) log(q(x)).

So we can try to write E[f(X)] into the form of �
P

x2X p(x)
log(q(x))+c

�� for some constant
� < 0 and c with p(·) being the pmf of X, for which we should write

�f(x) = log(q(x)) + c(�) () e
c(�)

e
�f(x)

= q(x).

With the fact that q is a pmf, we have

q(x) =
e
�f(x)

P
x2X e�f(x)

and c(�) = � log(

X

x2X
e
�f(x)

).

So for any � < 0, define the pmf q(x) := e�f(x)P
x2X e�f(x)

, then

E[f(X)] =
1

�

X

x2X
p(x) log(q(x)) +

c(�)

�
.

With � < 0, we have that E[f(X)]  ↵ is equivalent to �
P

x2X p(x) log(q(x))  ��↵+c(�).

Hence H(X)  �
P

x2X p(x) log(q(x))  ��↵+ c(�), and the equality holds i↵ p(x) = q(x),

i.e., P(X = x) = q(x) =
e�f(x)P

x2X e�f(x)
and ↵ =

P
x2X p(x)f(X) =

P
x2X f(x)

e�f(x)P
y2X e�f(y)

.

To make sure the existence of � < 0 such that E[f(X)] =
P

x2X q(x)f(x) = ↵, we leave the
proof to part (c).
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(c) Denote g(�) :=
P

x2X f(x)
e�f(x)P

y2X e�f(y)
. Then g is a di↵erentiable function with

g
0
(�) =

X

x2X
f(x)

2 e
�f(x)

P
y2X e�f(y)

�
X

x2X
f(x)

e
�f(x)

(
P

y2X e�f(y))2

X

y2X
f(y)e

�f(y)

= E[f(X)
2
]� (E[f(X)])

2
.

Since f is not a constant, so g
0
(�) > 0, which means g is a strictly increasing and contin-

uous function. Furthermore, g(0) = E[f(U)], g(�1) = minx2X f(x). So g(�) = ↵ 2
(min f(x),E[f(U)]) admits a unique solution � < 0.

Question 6 (A revision on strong law of large numbers (SLLN) in probability theory, please

take this question as a reference) Let X be a real-valued random variable.

(a) Assume additionally that X is non-negative. Show that for every x > 0, we have

P(X � x)  E[X]

x
.

(b) Let X be a random variable of mean µ and variance �
2
. Show that

P(|X � µ| > ")  �
2

✏2
.

(c) Let (Xn)n�1 be a sequence of i.i.d random variables with mean µ and variance �
2
. Show

that
1
m

Pm
n=1Xn converges to µ in probability, i.,e., for every " > 0,

lim
m!+1

P
 �����

1

m

mX

n=1

Xn � µ

����� > ✏

!
= 0.

This is a weak version of SLLN. It can be strengthen by Borel-Cantelli lemma

to the often-used version: P(limm!+1
1
m

Pm
n=1Xn = µ) = 1.

Answer 6 (a) E[X] = E[X1X�x] + E[X1X<x] � E[X1X�x] � E[x1X�x] = xP(X � x), so
we have the inequality.

(b) Similar to part (a), for any random variable Y and constant " > 0, P(|Y | > ")  E[Y 2]
"2 . Apply

Y = X � µ in this inequality, we get the one in the question.

(c) For any integer m, denote Ym =
1
m

Pm
n=1Xn � µ, then E[Ym] = 0,Var(Ym) =

�2

m . Hence

P(|Ym| > ")  �2

m"
m!+1�! 0.
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Question 7 (Optional) Partition the interval [0, 1] into n disjoint sub-intervals of length p1, · · · , pn.
Let X1, X2, · · · be i.i.d. random variables, uniformly distributed on [0, 1], and Zm(i) be the

number of the X1, · · · , Xm that lie in the i
th

interval of the partition. Show that the random

variables

Rm = ⇧
n
i=1p

Zm(i)
i satisfy

1

m
log(Rm)

m!+1�!
nX

i=1

pi log(pi) with probability 1.

Answer 7 Denote Ii as the i
th subinterval.

It is easy to see that 1
m log(Rm) =

1
m

Pn
i=1 Zm(i) log(pi) =

Pm
i=1

Pn
j=1 1Xj2Ii

m log(pi). Since

P(limn!+1

Pn
j=1 1Xj2Ii

m = pi) = 1, the conclusion follows.
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