PROBLEM SHEET 3, INFORMATION THEORY, HT 2022
DESIGNED FOR THE THIRD TUTORIAL CLASS

Question 1 For a random variable X with state space X = {x1,---,2z7} and distribution
p; = P(X = ;) given by

b1 D2 b3 P4 D5 D6 D7
0.49 | 0.26 | 0.12 | 0.04 | 0.04 | 0.03 | 0.02

(a) Find a binary Huffman code for X and its expected length.

(b) Find a ternary Huffman code for X and its expected length.

Answer 1 For the binary Huffman,

Table 1: Binary Huffman

stepl | pp =049 | po=0.26 p3 = 0.12 ps = 0.04 ps = 0.04 pg = 0.03 | py = 0.02
step2 | pp1 =049 | py=0.26 p3 =0.12 ps = 0.04 ps = 0.04 | pgr = 0.05
step3 | p1 =049 | py=0.26 p3 =0.12 pas = 0.08 pe7 = 0.05
step 4 p1 = 0.49 P2 = 0.26 p3 = 0.12 P4a567 = 0.13
step 5 pP1 = 0.49 P2 = 0.26 P34567 = 0.25
step 6 | p1 = 0.49 pasaser = 0.516
step 7 P1234567 = 1
So

c(1) = 0,¢(2) = 10, ¢35 = 110, ¢4 = 11100, ¢5 = 11101, ¢ = 11110, ¢; = 11111;

and its expected length is 0.49%140.26x2+0.12%3+0.04%x540.04%5+0.03% 5+ 0.02x5 = 2.02
For ternary Huffman, see the calculation in table 2.
So
c(1) =0,c¢(2) = 1,3 = 20,¢c4 = 21, ¢5 = 220, ¢ = 221, c7 = 222;

and its expected length is (0.49 + 0.26) * 1 4 (0.12 + 0.04) * 2 + (0.04 + 0.03 + 0.02)0.12 % 3 = 1.34



Table 2: Ternary Huffman

stepl | p1 =0.49 | po =0.26 | p3 =0.12 ps = 0.04 ps =0.04 | pg=0.03 | py =0.02
step2 | p1 =0.49 | po =0.26 | p3 =0.12 ps = 0.04 pse7 = 0.09

step 3 | p1 =0.49 | po = 0.26 Pp34as67 = 0.25

step 4 P123456 = 1

Question 2 (a) Prove that the Shannon’s code is a prefix code and calculate bounds on its
expected length. Give an example to demonstrate that it is not an optimal code.

(b) Prove that the Elias code is a prefix code and calculate bounds on its expected length. Is
it an optimal code?
Hint: Suppose Y =1{0,1,---,d}. For any i=1,---,|X|, suppose c(z;) =ay---ax
with k = |c¢(z)|. Denote v; = Z'jc:(?)‘ ajd=, r(i) = Z;;ll pj +pi/2 and 7(i) = r(i) +
pi/2. Try to show that the interval [Ui,vi+d*|c(mi)|) is contained in the interval
[fi—1,7i). Hence the intervals [vi,vi+d_|c($i)|) are disjoint to each other.

Answer 2 (a) Forthe Shannon's code, its length I, = [~ log(px(x))], which satisfies Y d = <
S, dosPx(@) =S py(2) = 1. So I, satisfies the Kraft-McMillan’s inequality. Furthermore,
the Shannon's code is exactly the one constructed in the proof of Theorem 3.5 in the elcture
notes, so it is a prefix code.

A counter example for the optimality of Shannon's code is as follows: X = {A, B}, px(B) =
274 px(A) =1—27% then
pr=Px(A)=1-2""pp=27",
so
r = 0,7”2 :pl,ll = 1,[2 = 4, C(A) = O,C(B) = 1111.
This is obviously not optimal since ¢(A) = 0,¢(B) = 1 is strictly better.
(b) Without loss of generality, suppose X = {1,2,--- ,m}and Y ={0,1,--- ,d}. Thedistribution
of X is p; = P(X =1).
Denote 1; = 23;11 pj+ 5 and 7 = Z;Zl p; =i+ 5. Forany fixed i € X', denote the d-ary

expansion of r; as 0.ajaz - - - and l; = [—log,(p;)|+1, Then the Elias code is ¢(i) = a1, - - - ay;.

(3

Denote v; as the value of d-ary expansion 0.a; ---ay,, i.e., v; = Zli ajd_j, then

j=1
v; < 1.
Together with d=% < p;d~! we know
vi+d 7l Sri—i—% gn+%=m.



On the other hand, 0 < r; —v; < d7 b, sov; >r; —d~ b >r;y —pid= ' > 1 —pi/2 =11
So we have [v;,v; + d~%) C [#i_1,7;), which implies [v;,v; + d~%) are disjoint.

If ¢ is not a prefix code, then 3¢ # j such that c(i) = c(j)y for some y € Y*, hence
v; = v; + d "'z with the d-ary expansion of z being 0.y. So v; € [v;,v; + d ). But this is
impossible because [v;,v; + d~") are disjoint.

Question 3 Prove the following weaker version of the Kraft-McMillan theorem (called Krafts
theorem) using rooted trees

(a)

(b)

Let ¢ : X — {0,---,d — 1}* be a prefix code. Consider its code-tree and argue that
Y owex d-le@)l < 1. [Note that the assumption that ¢ is a prefix code is crucial here,
otherwise the code-tree cannot be defined to begin with. In the Kraft-McMillan theorem
from the lecture we only require ¢ to be uniquely decodable].

Assume that >, d7'* < 1 with [, € N. Show that there exists a prefix code ¢ with
codeword lengths |c(x)| = I, for € X by constructing a rooted tree.

Answer 3 A prefix code is equivalent to a rooted tree, where each codeword corresponds to a
path from a leave to the root.

()

We call a d-ary tree being semi-complete if the degree of every non-leave vertex has d direct
descendants. In a semi-complete d-ary tree for any leave z, denote h(x) as the height from
the root to the tree with h(root) = 0. It is easy to check that Zevery leave x d=M=) =1,

For the code-tree of a prefix code, it can be expanded to a semi-complete tree by adding some
—h(z
leaves to a non-leave vertex. Hence Zevery leave z @ @) < 1.

We call a d-ary tree being complete with height h if it is semi-complete, the distance from
each leave to the root is h.

Given [, satisfies the condition, denote h = max, [, then we can construct a d-ary complete
tree with maximal height H.

Suppose 11 <y < --- <. We mark nodes and cut branches of a complete tree as follows:

(1) Take i =1.
(2) Find the first non-marked node on the left of the tree with height /;, cut off its descendant

vertices, and mark all ancestral vertices (including itself) and their edges up to the root.

(3) Set i =i+ 1 and repeat (2) until i =m + 1.

By the assumption Y ", d~% < 1, we know we can run this construction for all k < m
(otherwise, if we cannot find a node with height [} at some k < m, then it must happen that
Zle d~% > 1). All marked vertices and edges and the i*" leave in the algorithm corresponds
to the codeword i.



Question 4 Give yet another proof for d71€@ < 1 if ¢ is a prefix code by using the
“probabilistic method”: randomly generate elements of {0,--- ,d — 1}* by sampling i.i.d. from
{0,--+,d — 1} and consider the probability of writing a codeword of c.

Answer 4 Sample independent uniform variables on {0,--- ,d — 1}, append them inductively to
the right, and stop if we obtain a codeword of c¢. By definition, and since c¢ is a prefix code, the
probability of writing the word ¢(z) is exactly d~1€®@)| Thus the probability for this process to stop
is equal to > d~1¢@1 implying this quantity is at most 1.

Question 5 Let X be uniformly distributed over a finite set X with |X| = 2" for some n € N.
Given a sequence Ai, As,--- of subsets of X we ask a sequence of questions of the form X €
A, X € Ay, ete.

(a) We can choose the sequence of subsets. How many such questions do we need to determine
the value of X7 What is the most efficient way to do so?
[Note: If we regard all questions as a mapping from X to {Yes, No}*, we can
even think about how to design the sequence of subsets to minimise the expected
number of questions to ask to get the value of a random variable X with any
given distribution.]

(b) We now randomly (i.i.d. and uniform) draw a sequence of sets A, Ag,--- from the set of
all subset of X. Fix z,y € X. Conditional on {X = z}:

i. What is the probability that « and y are indistinguishable after the first £ random
questions?

ii. What is the expected number of elements in X'\{z} that are indistinguishable from
x after the first k questions?

Answer 5 (a) Huffman codes are of length n, hence we can identify X in n deterministic(!)
questions.

(b) Notice that a uniform random subset of X’ contains each z € X independently with probability
1/2.

i. The probability that a random subset A distinguishes = and y is 1/2. Since the A; are
independent, the probability is 27%.

ii. Forall y # x, let B, be 1 if the questions Ay,---, A; do not distinguish = andy, and 0
if they do. Then the (B,) are all Bernouilli random variables with parameter 2%, and

there are 2"! of them. The wanted expectation is E {Zy# By] = (2" —1)27k.



Question 6 Let |X'| = 100 and p the uniform distribution on X. How many codewords are
there of length [ = 1,2,--- in an Huffman binary code?

Answer 6 By Huffman procedure, we can see that there are 28 codewords of length 6 and 72 of
length 7.

Another way to get this numbers is as follows:

Consider the optimisation of [, for optimal code

100 100
min sz‘li subject to Z 9~k
i=1 i=1

The optimal [; should be integers close to — log(p;), which is 6 or 7 in this question.

To prove this, denote I' = {u = (uy,---uip0) : Y, 27" < 1} being the set of feasible solutions
(without integer constraint), and J(u) = > u; being the objective function.

Denote u* = log(100) * (1,1,1,---1), A = {6,7}1°° N T, and A be convex hull of A, which
is contained in I'. Then for any feasible solution out of A, the segment between u and u* must
intersect with A, hence intersect with the surface of A. So, there exists a A € (0,1) such that
u* = Mu+(1—\)u* is on the surface of A, and J(ut) = A\J(u)+(1—X)J(u*). Since J(u*) < J(u*),
so J(u") < J(u). Furthermore, u*) is on the surface of A, so there exists a & € A such that
J(@) < J(u), which implies u cannot be optimal.

Since p; = 1/100, log(p;) € (6,7), so I, can only be 6 or 7. Suppose there are k 7's and 100 — k
6's, then k277 + (100 — k)276 = 100 276 — k + 277 < 1 and we want k to be as big as possible.
Hence k = floor(27(100 * 279 — 1)) = floor(200 — 128) = 72.

Question 7 (Optional) Let X be a Bernoulli random variable with P(X = 0) = 0.995,P(X =
1) = 0.005 and consider a sequence Xi,--- , Xjo0 consisting of i.i.d. copies of X. We study a
block code of the form c: {0,1}1% + {0,1}™ for a fixed m € N.

(a) What is the minimal m such that there exists ¢ such that its restriction to sequences
{0,1}190 that contain three or fewer 1s is injective?

(b) What is the probability of observing a sequence that contains four or more 1s? Compare
the bound given by the Chebyshev inequality with the actual probabiltiy of this event.

Answer 7 (a) n The number of binary sequences with 3 or fewer ones is

100 100 100 100
() () () (1) =oomn

so the required minimal codeword length is

Mog,(166751] = 18.



(b) The probability of having at most 3 ones is

3
> ( H0 ) 0.057(0.995)'%~" ~ 0.99833
i=0 !
and the wanted probability is approximately 1 — 0.99833 = 0.00167.

It is easy to check E[X] = 0.005 and Var(X) = 0.995%0.0052+0.005%0.995? = 0.005x0.995 ~
0.005.

Denote X = S1%0(X; — E[X;]), then E[X] = 0, E[X?] = Var(X) = 100Var(X) = 0.5.
Recall that Chebyshevs inequality states that

_ E[X?] 0.5
P(|X]>¢) < o
Now we want to estimate the probability for
100
Y Xi>4e X >4-05=35.
i=1
Hence we take ¢ = 3.5, then
100 ) ) 05
P> X;>4) =P(X >35) <P(|X]>35) < 552 ~ 0.0406.
i=1
In fact, if we use the central limit theory, we know X ___ X2 approximately follows
100Var(X)

the standard normal, then P(X > 3.5) = P(Xv/2>T7/V2=1—-®(7//2) =~ 3.7+ 107".

Question 8 (Optional) Let X be a X = {1,2,3,4}-valued random variable with pmf p and
binary code ¢ as in the Table 1.

x=| 1 2 3 4
p= 105025 | 0.125 | 0.125
c=1] 0 10 110 111

Table 3: Data for Question 8

For n € N, we generate a sequence in X" by sampling i.i.d. from the distribution p. We then
pick one bit uniformly at random from the binary encoded sequence. What is the asymptotic
(as m — 400) probability that this bit equals 17



Answer 8 Let X1, ---,X, be iid. copies of X. For each i, let Y; be the number of ones in
¢(X;) and Z; the number of bits in ¢(X;).
For a fixed n, the wanted probability is, equal to

Z?:l Y _ Z?:l Yz/”
Z?:l Z; Z?:l Zi/n

When n —, by the SLLN, we have the a.s. convergences

zn:Y,-/n — B[] = 7/8, Zn: Zi/n — B[Zy] = 7/4.
=1 =1

Hence the asymptotic probability is 1/2.



