
Problem sheet 3, Information Theory, HT 2022

Designed for the third tutorial class

Question 1 For a random variable X with state space X = {x1, · · · , x7} and distribution
pi = P(X = xi) given by

p1 p2 p3 p4 p5 p6 p7

0.49 0.26 0.12 0.04 0.04 0.03 0.02

(a) Find a binary Huffman code for X and its expected length.

(b) Find a ternary Huffman code for X and its expected length.

Answer 1 For the binary Huffman,

Table 1: Binary Huffman

step 1 p1 = 0.49 p2 = 0.26 p3 = 0.12 p4 = 0.04 p5 = 0.04 p6 = 0.03 p7 = 0.02

step 2 p1 = 0.49 p2 = 0.26 p3 = 0.12 p4 = 0.04 p5 = 0.04 p67 = 0.05

step 3 p1 = 0.49 p2 = 0.26 p3 = 0.12 p45 = 0.08 p67 = 0.05

step 4 p1 = 0.49 p2 = 0.26 p3 = 0.12 p4567 = 0.13

step 5 p1 = 0.49 p2 = 0.26 p34567 = 0.25

step 6 p1 = 0.49 p234567 = 0.516

step 7 p1234567 = 1

So

c(1) = 0, c(2) = 10, c3 = 110, c4 = 11100, c5 = 11101, c6 = 11110, c7 = 11111;

and its expected length is 0.49∗1+0.26∗2+0.12∗3+0.04∗5+0.04∗5+0.03∗5+0.02∗5 = 2.02
For ternary Huffman, see the calculation in table 2.
So

c(1) = 0, c(2) = 1, c3 = 20, c4 = 21, c5 = 220, c6 = 221, c7 = 222;

and its expected length is (0.49 + 0.26) ∗ 1 + (0.12 + 0.04) ∗ 2 + (0.04 + 0.03 + 0.02)0.12 ∗ 3 = 1.34
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Table 2: Ternary Huffman

step 1 p1 = 0.49 p2 = 0.26 p3 = 0.12 p4 = 0.04 p5 = 0.04 p6 = 0.03 p7 = 0.02

step 2 p1 = 0.49 p2 = 0.26 p3 = 0.12 p4 = 0.04 p567 = 0.09

step 3 p1 = 0.49 p2 = 0.26 p34567 = 0.25

step 4 p123456 = 1

Question 2 (a) Prove that the Shannon’s code is a prefix code and calculate bounds on its
expected length. Give an example to demonstrate that it is not an optimal code.

(b) Prove that the Elias code is a prefix code and calculate bounds on its expected length. Is
it an optimal code?
Hint: Suppose Y = {0, 1, · · · , d}. For any i = 1, · · · , |X |, suppose c(xi) = a1 · · · ak
with k = |c(x)|. Denote vi =

∑|c(xi)|
j=1 ajd

−j, r(i) =
∑i−1

j=1 pj + pi/2 and r̂(i) = r(i) +

pi/2. Try to show that the interval [vi, vi+d
−|c(xi)|) is contained in the interval

[r̂i−1, r̂i). Hence the intervals [vi, vi + d−|c(xi)|) are disjoint to each other.

Answer 2 (a) For the Shannon’s code, its length lx = d− log(pX(x))e, which satisfies
∑

x d
−lx ≤∑

x d
log(pX(x)) =

∑
x pX(x) = 1. So lx satisfies the Kraft-McMillan’s inequality. Furthermore,

the Shannon’s code is exactly the one constructed in the proof of Theorem 3.5 in the elcture
notes, so it is a prefix code.

A counter example for the optimality of Shannon’s code is as follows: X = {A,B}, pX(B) =
2−4, pX(A) = 1− 2−4, then

p1 = PX(A) = 1− 2−4, p2 = 2−4,

so
r1 = 0, r2 = p1, l1 = 1, l2 = 4, c(A) = 0, c(B) = 1111.

This is obviously not optimal since c(A) = 0, c(B) = 1 is strictly better.

(b) Without loss of generality, suppose X = {1, 2, · · · ,m} and Y = {0, 1, · · · , d}. The distribution
of X is pi = P(X = i).

Denote ri =
∑i−1

j=1 pj + pi
2 and r̂i =

∑i
j=1 pj = ri + pi

2 . For any fixed i ∈ X , denote the d-ary
expansion of ri as 0.a1a2 · · · and li = d− logd(pi)e+1, Then the Elias code is c(i) = a1, · · · ali .

Denote vi as the value of d-ary expansion 0.a1 · · · ali , i.e., vi =
∑li

j=1 ajd
−j , then

vi ≤ ri.

Together with d−li ≤ pid−1 we know

vi + d−li ≤ ri +
pi
d
≤ ri +

pi
2

= r̂i.

2



On the other hand, 0 ≤ ri − vi < d−li , so vi > ri − d−li ≥ ri − pid−1 > ri − pi/2 = r̂i−1.

So we have [vi, vi + d−li) ⊆ [r̂i−1, r̂i), which implies [vi, vi + d−li) are disjoint.

If c is not a prefix code, then ∃ i 6= j such that c(i) = c(j)y for some y ∈ Y∗, hence
vi = vj + d−ljz with the d-ary expansion of z being 0.y. So vi ∈ [vj , vj + d−lj ). But this is
impossible because [vi, vi + d−li) are disjoint.

Question 3 Prove the following weaker version of the Kraft-McMillan theorem (called Krafts
theorem) using rooted trees

(a) Let c : X 7→ {0, · · · , d − 1}∗ be a prefix code. Consider its code-tree and argue that∑
x∈X d

−|c(x)| ≤ 1. [Note that the assumption that c is a prefix code is crucial here,
otherwise the code-tree cannot be defined to begin with. In the Kraft-McMillan theorem
from the lecture we only require c to be uniquely decodable].

(b) Assume that
∑

x∈X d
−lx ≤ 1 with lx ∈ N. Show that there exists a prefix code c with

codeword lengths |c(x)| = lx for x ∈ X by constructing a rooted tree.

Answer 3 A prefix code is equivalent to a rooted tree, where each codeword corresponds to a
path from a leave to the root.

(a) We call a d-ary tree being semi-complete if the degree of every non-leave vertex has d direct
descendants. In a semi-complete d-ary tree for any leave x, denote h(x) as the height from
the root to the tree with h(root) = 0. It is easy to check that

∑
every leave x d

−h(x) = 1.

For the code-tree of a prefix code, it can be expanded to a semi-complete tree by adding some
leaves to a non-leave vertex. Hence

∑
every leave x d

−h(x) ≤ 1.

(b) We call a d-ary tree being complete with height h if it is semi-complete, the distance from
each leave to the root is h.

Given lx satisfies the condition, denote h = maxx lx, then we can construct a d-ary complete
tree with maximal height H.

Suppose l1 ≤ l2 ≤ · · · ≤ lm. We mark nodes and cut branches of a complete tree as follows:

(1) Take i = 1.

(2) Find the first non-marked node on the left of the tree with height li, cut off its descendant
vertices, and mark all ancestral vertices (including itself) and their edges up to the root.

(3) Set i = i+ 1 and repeat (2) until i = m+ 1.

By the assumption
∑m

i=1 d
−li ≤ 1, we know we can run this construction for all k ≤ m

(otherwise, if we cannot find a node with height lk at some k ≤ m, then it must happen that∑k
i=1 d

−lx > 1). All marked vertices and edges and the ith leave in the algorithm corresponds
to the codeword i.
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Question 4 Give yet another proof for
∑

x∈X d
−|c(x)| ≤ 1 if c is a prefix code by using the

“probabilistic method”: randomly generate elements of {0, · · · , d− 1}∗ by sampling i.i.d. from
{0, · · · , d− 1} and consider the probability of writing a codeword of c.

Answer 4 Sample independent uniform variables on {0, · · · , d − 1}, append them inductively to
the right, and stop if we obtain a codeword of c. By definition, and since c is a prefix code, the
probability of writing the word c(x) is exactly d−|c(x)|. Thus the probability for this process to stop
is equal to

∑
x∈X d

−|c(x)|, implying this quantity is at most 1.

Question 5 Let X be uniformly distributed over a finite set X with |X | = 2n for some n ∈ N.
Given a sequence A1, A2, · · · of subsets of X we ask a sequence of questions of the form X ∈
A1, X ∈ A2, etc.

(a) We can choose the sequence of subsets. How many such questions do we need to determine
the value of X? What is the most efficient way to do so?
[Note: If we regard all questions as a mapping from X to {Y es,No}∗, we can

even think about how to design the sequence of subsets to minimise the expected

number of questions to ask to get the value of a random variable X with any

given distribution.]

(b) We now randomly (i.i.d. and uniform) draw a sequence of sets A1, A2, · · · from the set of
all subset of X . Fix x, y ∈ X . Conditional on {X = x}:

i. What is the probability that x and y are indistinguishable after the first k random
questions?

ii. What is the expected number of elements in X\{x} that are indistinguishable from
x after the first k questions?

Answer 5 (a) Huffman codes are of length n, hence we can identify X in n deterministic(!)
questions.

(b) Notice that a uniform random subset of X contains each x ∈ X independently with probability
1/2.

i. The probability that a random subset A distinguishes x and y is 1/2. Since the Ai are
independent, the probability is 2−k.

ii. For all y 6= x, let By be 1 if the questions A1, · · · , Ak do not distinguish x andy, and 0
if they do. Then the (By) are all Bernouilli random variables with parameter 2−k, and

there are 2n−1 of them. The wanted expectation is E
[∑

y 6=xBy

]
= (2n − 1)2−k.
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Question 6 Let |X | = 100 and p the uniform distribution on X . How many codewords are
there of length l = 1, 2, · · · in an Huffman binary code?

Answer 6 By Huffman procedure, we can see that there are 28 codewords of length 6 and 72 of
length 7.

Another way to get this numbers is as follows:
Consider the optimisation of lx for optimal code

min

100∑
i=1

pili subject to
100∑
i=1

2−li

The optimal li should be integers close to − log(pi), which is 6 or 7 in this question.
To prove this, denote Γ = {u = (u1, · · ·u100) :

∑
2−ui ≤ 1} being the set of feasible solutions

(without integer constraint), and J(u) =
∑
ui being the objective function.

Denote u∗ = log(100) ∗ (1, 1, 1, · · · 1), A = {6, 7}100 ∩ Γ, and Ā be convex hull of A, which
is contained in Γ. Then for any feasible solution out of Ā, the segment between u and u∗ must
intersect with Ā, hence intersect with the surface of Ā. So, there exists a λ ∈ (0, 1) such that
uλ = λu+(1−λ)u∗ is on the surface of Ā, and J(uλ) = λJ(u)+(1−λ)J(u∗). Since J(u∗) < J(u∗),
so J(uλ) < J(u). Furthermore, u∗λ is on the surface of Ā, so there exists a û ∈ A such that
J(û) ≤ J(uλ), which implies u cannot be optimal.

Since pi = 1/100, log(pi) ∈ (6, 7), so lx can only be 6 or 7. Suppose there are k 7’s and 100−k
6’s, then k2−7 + (100 − k)2−6 = 100 ∗ 2−6 − k ∗ 2−7 ≤ 1 and we want k to be as big as possible.
Hence k = floor(27(100 ∗ 2−6 − 1)) = floor(200− 128) = 72.

Question 7 (Optional) Let X be a Bernoulli random variable with P(X = 0) = 0.995,P(X =
1) = 0.005 and consider a sequence X1, · · · , X100 consisting of i.i.d. copies of X. We study a
block code of the form c : {0, 1}100 7→ {0, 1}m for a fixed m ∈ N.

(a) What is the minimal m such that there exists c such that its restriction to sequences
{0, 1}100 that contain three or fewer 1s is injective?

(b) What is the probability of observing a sequence that contains four or more 1s? Compare
the bound given by the Chebyshev inequality with the actual probabiltiy of this event.

Answer 7 (a) n The number of binary sequences with 3 or fewer ones is(
100
0

)
+

(
100
1

)
+

(
100
2

)
+

(
100
3

)
= 166751,

so the required minimal codeword length is

dlog2(166751e = 18.
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(b) The probability of having at most 3 ones is

3∑
i=0

(
100
i

)
0.05i(0.995)100−i ≈ 0.99833

and the wanted probability is approximately 1− 0.99833 = 0.00167.

It is easy to check E[X] = 0.005 and Var(X) = 0.995∗0.0052+0.005∗0.9952 = 0.005∗0.995 ≈
0.005.

Denote X̄ =
∑100

i=1(Xi − E[Xi]), then E[X̄] = 0, E[X̄2] = Var(X̄) = 100Var(X) = 0.5.
Recall that Chebyshevs inequality states that

P
(
|X̄| ≥ ε

)
≤ E[X̄2]

ε2
=

0.5

ε2
.

Now we want to estimate the probability for

100∑
i=1

Xi ≥ 4⇔ X̄ ≥ 4− 0.5 = 3.5.

Hence we take ε = 3.5, then

P(
100∑
i=1

Xi ≥ 4) = P(X̄ ≥ 3.5) < P(|X̄| ≥ 3.5) ≤ 0.5

3.52
≈ 0.0406.

In fact, if we use the central limit theory, we know X̄√
100Var(X)

= X̄
√

2 approximately follows

the standard normal, then P(X̄ ≥ 3.5) = P(X̄
√

2 ≥ 7/
√

2 = 1− Φ(7/
√

2) ≈ 3.7 ∗ 10−7.

Question 8 (Optional) Let X be a X = {1, 2, 3, 4}-valued random variable with pmf p and
binary code c as in the Table 1.

x= 1 2 3 4

p= 0.5 0.25 0.125 0.125

c= 0 10 110 111

Table 3: Data for Question 8
.

For n ∈ N, we generate a sequence in X n by sampling i.i.d. from the distribution p. We then
pick one bit uniformly at random from the binary encoded sequence. What is the asymptotic
(as n→ +∞) probability that this bit equals 1?
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Answer 8 Let X1, · · · , Xn be i.i.d. copies of X. For each i, let Yi be the number of ones in
c(Xi) and Zi the number of bits in c(Xi).

For a fixed n, the wanted probability is, equal to∑n
i=1 Yi∑n
i=1 Zi

=

∑n
i=1 Yi/n∑n
i=1 Zi/n

.

When n→, by the SLLN, we have the a.s. convergences

n∑
i=1

Yi/n→ E[Y1] = 7/8,

n∑
i=1

Zi/n→ E[Z1] = 7/4.

Hence the asymptotic probability is 1/2.
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