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Problem Sheet 1

1 Nearest Neighbour Classification

In the lectures, we studied the perceptron, a linear classifier of the form y = sign(w · x + w0),
where sign(z) = 1 if z ≥ 0 and sign(z) = 0 otherwise. The parameters to be learnt are w
and w0. The “Nearest neighbour classifier” (NN) is a different approach to learning from data.
Suppose we are given N points (x1, y1), . . . , (xN , yN ) where yi ∈ {0, 1}; for a parameter k and
given a new point x∗, the k-NN approach does the following: find xj1 , . . .xjk the k-closest points
to x∗, then output ŷ∗ as the majority label from the set {yj1 , . . . , yjk}, i.e., the most commonly
occurring label among the k-nearest neighbours.

1. What advantage does the k-NN approach offer over a linear classifier like the perceptron?

2. How many parameters does the nearest neighbour model have? How much memory do
you need to store the model? What is the computational cost of predicting the label ŷ∗?

3. In this part, we’ll look at the setting where the vectors x are points on the boolean
hypercube, i.e., x ∈ {0, 1}D. Fix x∗ = (0, 0, . . . , 0) to be the origin and imagine that data
consists of points drawn uniformly at random from the boolean hypercube. What is the
distribution of the Hamming distance of data points from x∗? What happens as D →∞?
(Hint: Use the central limit theorem.)

4. Let us now fix some numbers. Suppose the dimension of the data D = 10,000; let x∗ =
(0, 0, . . . , 0) and suppose we generated N = 10,000 data points. What do you expect the
distance of x∗ from the nearest data-point to be? the furthest? How large does N need
to be to get points that are reasonably close to x∗, say within Hamming distance 50?

Remark: You do not have to write precise numbers or even mathematical expressions for the an-
swers to part 4 above. Make sure you understand the behaviour qualitatively. The phenomenon
explored in the last two parts of the question is referred to as the curse of dimensionality.

2 Logical Gates Using Perceptrons

Recall that a perceptron with input features x1, . . . , xD, weights w1, . . . , wD and bias w0 outputs
the value:

y =

{
1 if w0 +

∑D
i=1wixi ≥ 0

0 otherwise
(2.1)

1. Suppose there are at most two inputs and the inputs always take binary values, i.e.,
xi ∈ {0, 1}. Show how to construct and, or and not gates by suitably adjusting weights.
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2. The constructions for and and or gates required only the bias term w0 to be negative,
all other weights were positive. Can you achieve a similar construction for the not gate?
Why?

3. Can you construct an xor (exclusive or) gate? If not, give reasons.

4. Often, instead of using a hard threshold we would like to use a continuous approximation.
Recall the hyperbolic tangent function tanh(z) = ez−e−z

ez+e−z . We consider another type of
artificial neuron whose output is defined as

y = tanh

w0 +
D∑
i=1

wixi

 . (2.2)

Suppose you treat outputs above 0.99 as true and those below −0.99 as false. Show that
similar constructions to the ones you had earlier can still be used to construct logic gates.

3 Share Price Prediction using Linear Regression

Note: This example is for illustrative purposes to help you understand linear regression. It is
not recommended that you use this for actual share price prediction.

Suppose that x0, x1, . . . , xt, xt+1, . . ., denote the (daily) share prices of a particular stock over
time. Answer the following questions (you should add a bias term as necessary):

1. Write a linear model to predict xt+1 using the share prices on the two preceeding days,
i.e., xt and xt−1 .

2. The more useful quantity to predict is ∆t+1 := xt+1−xt, the change in share value. Write
a linear model to predict ∆t+1 using xt and xt−1.

3. Write a linear model to predict ∆t+1 using ∆t.

4. Write a linear model to predict ∆t+1 using ∆t and xt.

5. Which of the above four models, if any, are equivalent? Justify your answer briefly.

6. Given that the only observations you make is the sequence (x0, x1, . . . , xt, xt+1, . . . , xT )
for some T , explain how you would train the model in Part (4) above.
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