Machine Learning
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Problem Sheet 2

1 Maximum Likelihood Estimation of o

As presented in Lecture 4, we consider a discriminative framework, where the input datapoints
X1,...,Xy are fixed (we will not consider these as being generated by a random process). Let
w and o be the parameters defining the linear model with Gaussian noise, i.e.,

yi ~ N(x]w,0?). (1.1)
In Lecture 4 we showed that the maximum likelihood estimate for w is the same as the least
square estimator, wy;, = (X'X)"!XTy. Show that the MLE for o? is given by
2 ].

OmL = N(y - XWML)T(y - XWML)- (1.2)

2 Centering and Ridge Regression

Assume that % Zf\;1 x; = 0, i.e., the data is centered. (In this question we will treat the
constant term separately, as centering this would give us a column of 0s.) Let us denote the
parameter for the leading constant term as b (for “bias”). So the linear model is § = b + x'w.
Consider minimizing the ridge objective:

Lyidge(W,b) = (Xw + b1 — Y)T(Xw + b1l —y) 4+ Iw'w (2.1)

Here 1 is the vector of all ones and note that b? is not regularized. Show that if b and W
are the resulting solutions obtained by minimising the above objective, then
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What happens if you also center y?

3 Bias of the Least Squared Estimator

Suppose that the data D = ((x;, yz))f\il is truly generated from a linear model, i.e.,

T

Ely|xw]=x"w (3.1)

for some fixed (but unknown) parameter vector w*. Recall that the least squares estimator is

wis = (XTX)"1XTy. (3.2)
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1. Assume that xi,...,xy are fixed and that XTX is invertible. You can think of the data
D as a random variable (because of the possible noise in the y;s). Thus, wig(D) is itself
a random variable. Show that the expectation of the estimator wis(D) (with respect to
D) is w*. Such an estimator is called an unbiased estimator, as its expectation equals the
true parameter value.

2. Now suppose we have some other estimator w which may not be unbiased. The bias is
defined as
Bias(%) = |[E [#(D)] — w*|. (33)

Thus, the bias is the Euclidean distance between the expectation of the estimator and the
true parameter. Suppose you are interested in minimizing the squared distance between
the estimated parameters and true parameters, i.e., to minimize |W(D) — w*||?. Show
that the expected (with respect to D) squared distance can be decomposed as follows:

E[|W(D) - w'|}] = |E [#(D)] - w|* + E | I¥(D) ~E[#(D)] |2 (3.4)

The first term above is just the squared bias and the second term above is the variance
of the estimator. Thus, while being unbiased looks like a natural property to demand of
estimators, it might sometimes be preferable to have a biased estimator if it has a much
lower variance. This is what ridge regression or LASSO does.

4 Maximum Likelihood and Model Selection

Let the random variable x € {0,1} model the outcome of an experiment, such that the event
x = 1 occurs with probability 6;. Suppose that someone else observes the experiment and
reports to you the outcome, y. But this person is unreliable and only reports the result correctly
with probability #y. That is, p(y | x, 62) is given by

‘yZO y=1
x=0| 6 1—6,
r=1|1—-0y 6y

Assume that 65 is independent of = and 6.

1. Write down the joint probability distribution p(xz,y | 8) as a 2 x 2 table, in terms of
0 = (61,6).

2. Given the following dataset: x = (1,1,0,1,1,0,0), y = (1,0,0,0,1,0, 1). What are the nu-
merical values of the MLEs for §; and 627 What is the numerical value p(D | 8, Ms) where
Ms denotes this 2-parameter model? Justify your answer by including the derivations.

3. Now consider a model with 4 parameters, 8 = (6o, 00,1, 01,0, 01,1), representing p(z, y | 0) =
6. (Only 3 of these parameters are free to vary, since they must sum to one.) What is
the MLE of 87 What is p(D | 8, My) where My denotes this 4-parameter model?
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4. Suppose we are not sure which model is correct. We compute the leave-one-out cross-
validated log-likelihood of the 2-parameter model and the 4-parameter model as follows:

N
L(M) =" logplxi,yi | M.6(D-))
=1

and §(D_i) denotes the MLE computed on D excluding the i*" observation. Which model
will CV pick and why?

5 The Huber loss in a linear regression setting

In this question, we will investigate the Huber loss in a linear regression setting. Given arbitrary
but fixed parameters A, u € R such that A\, > 0, the Huber loss is given by the function
hxyu R — R such that

Alzl—2) if ,
hap(z) = (1= ) il = 5

pz? otherwise.

Given a vector z = (21,...,2p) € RP, we extend hy , such that h) ,(z) = Zil hyu(z;). Recall
that when dealing with absolute values, the sign function defined as follows is often helpful:

. 1 ifz>0,
sign(z) =

—1 otherwise.

1. Let us fix A = 4 and p = 1. Draw three graphs plotting hy1(2), and the absolute and the
square loss functions. Briefly compare the Huber loss to the absolute and the square loss
functions. What can you say about outliers?

2. Given a training set D = {(x;,%;))Y;, where x; € RP and y; € R, we ignore any noise
terms and define the loss function as

Zh,\# —w'-x;),

where w € R? is the model parameter.

Compute VL.

3. For the remainder of this question, we will discuss using the Huber loss as a regulariser.
Let £ : R — R be an arbitrary loss function, and consider the following regularised loss

functions:
1 N
H(z; D) = hy ,(2) NZ: yi —z7 -
N
S(v,w; D) = A||vl[1 + pllwlf5 + Z (v+w)T-x;).
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Suppose we let A\ — oo in H(z; D) and S(v, w; D). Which types of regularised regression
do we obtain? What happens when yu — oco?
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