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Week 5

Problem Sheet 2 Solutions

1 Maximum Likelihood Estimation of σ

As presented in Lecture 4, we consider a discriminative framework, where the input datapoints
x1, . . . ,xN are fixed (we will not consider these as being generated by a random process). Let
w and σ be the parameters defining the linear model with Gaussian noise, i.e.,

yi ∼ N (xT
i w, σ

2). (1.1)

In Lecture 4 we showed that the maximum likelihood estimate for w is the same as the least
square estimator, wML = (XTX)−1XTy. Show that the MLE for σ2 is given by

σ2ML =
1

N
(y −XwML)T(y −XwML). (1.2)

Solution: We begin by recalling the negative log-likelihood (NLL)

NLL(y | X,w, σ) =
1

2σ2
(Xw − y)T(Xw − y) +

N

2
log(2πσ2)

Differentiating with respect to σ

dNLL(y | X,w,σ)
dσ = − 1

σ3
(Xw − y)T(Xw − y) +

N

σ

Calculating for σ and substituting w = wML = (XTX)−1XTy gives the required result.

2 Centering and Ridge Regression

Assume that 1
N

∑N
i=1 xi = 0, i.e., the data is centered. (In this question we will treat the

constant term separately, as centering this would give us a column of 0s.) Let us denote the
parameter for the leading constant term as b (for “bias”). So the linear model is ŷ = b+ xTw.
Consider minimizing the ridge objective:

Lridge(w, b) = (Xw + b1− y)T(Xw + b1− y) + λwTw (2.1)

Here 1 is the vector of all ones and note that b2 is not regularized. Show that if b̂ and ŵ
are the resulting solutions obtained by minimising the above objective, then

b̂ =
1

N

N∑
i=1

yi

ŵ = (XTX + λID)−1XTy

What happens if you also center y?
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Solution: The fact that X is centered implies that XT1 = 0. When y is centered, yT1 = 0.
We use these facts in the computation of the derivative below. We calculate the derivative of
Lridge(w, b) with respect to b and the gradient with respect to w.

dLridge
db (w, b) = 2Nb− 2 · 1Ty

∇wLridge(w, b) = 2XTXw − 2XTy + 2λw

When only X is centered, we get that b̂ = 1
N

∑N
i=1 yi by setting the derivative to 0. When y is

centered, b = 0, so we can ignore the bias term entirely.

3 Bias of the Least Squared Estimator

Suppose that the data D = 〈(xi, yi)〉Ni=1 is truly generated from a linear model, i.e.,

E
[
y | x,w∗

]
= xTw∗ (3.1)

for some fixed (but unknown) parameter vector w∗. Recall that the least squares estimator is

ŵLS = (XTX)−1XTy. (3.2)

1. Assume that x1, . . . ,xN are fixed and that XTX is invertible. You can think of the data
D as a random variable (because of the possible noise in the yis). Thus, ŵLS(D) is itself
a random variable. Show that the expectation of the estimator ŵLS(D) (with respect to
D) is w∗. Such an estimator is called an unbiased estimator, as its expectation equals the
true parameter value.

Solution: We observe that E
[
y | X,w∗

]
= Xw∗. Thus,

E [ŵLS] = E
[
(XTX)−1XTy

]
= w∗.

2. Now suppose we have some other estimator ŵ which may not be unbiased. The bias is
defined as

Bias(ŵ) = ‖E
D

[
ŵ(D)

]
−w∗‖. (3.3)

Thus, the bias is the Euclidean distance between the expectation of the estimator and the
true parameter. Suppose you are interested in minimizing the squared distance between
the estimated parameters and true parameters, i.e., to minimize ‖ŵ(D) − w∗‖2. Show
that the expected (with respect to D) squared distance can be decomposed as follows:

E
D

[
‖ŵ(D)−w∗‖2

]
= ‖E

D

[
ŵ(D)

]
−w∗‖2 + E

D

[
‖ŵ(D)− E

D

[
ŵ(D)

]
‖2
]

(3.4)

The first term above is just the squared bias and the second term above is the variance
of the estimator. Thus, while being unbiased looks like a natural property to demand of
estimators, it might sometimes be preferable to have a biased estimator if it has a much

Page 2



Machine Learning
Michaelmas Term 2021

Week 5

lower variance. This is what ridge regression or LASSO does.

Solution: We have the following.

E
D

[
‖ŵ(D)−w∗‖2

]
= E
D

[
‖ŵ(D)− E

D

[
ŵ(D)

]
+ E
D

[
ŵ(D)

]
−w∗‖2

]
= E
D

[
‖ŵ(D)− E

D

[
ŵ(D)

]
‖2
]

+ ‖E
D

[
ŵ(D)

]
−w∗‖2

+ 2

(
E
D

[
ŵ(D)

]
−w∗

)
ED
[
ŵ(D)− ED[ŵ(D)]

]
= ‖ED[ŵ(D)]−w∗‖2 + ED

[
‖ŵ(D)− ED[ŵ(D)]‖2

]
4 Maximum Likelihood and Model Selection

Let the random variable x ∈ {0, 1} model the outcome of an experiment, such that the event
x = 1 occurs with probability θ1. Suppose that someone else observes the experiment and
reports to you the outcome, y. But this person is unreliable and only reports the result correctly
with probability θ2. That is, p(y | x, θ2) is given by

y = 0 y = 1

x = 0 θ2 1− θ2
x = 1 1− θ2 θ2

Assume that θ2 is independent of x and θ1.

1. Write down the joint probability distribution p(x, y | θ) as a 2 × 2 table, in terms of
θ = (θ1, θ2).

Solution: The joint distribution is p(x, y | θ) = p(x | θ1)p(y | x, θ2), given by the following
table:

y = 0 y = 1

x = 0 (1− θ1)θ2 (1− θ1)(1− θ2)
x = 1 θ1(1− θ2) θ1θ2

2. Given the following dataset: x = (1, 1, 0, 1, 1, 0, 0), y = (1, 0, 0, 0, 1, 0, 1). What are the
numerical values of the MLEs for θ1 and θ2? What is the numerical value p(D | θ̂,M2)
where M2 denotes this 2-parameter model? Justify your answer by including the deriva-
tions.

Solution: The log-likelihood is

log p(D | θ) =
∑
i

log p(xi | θ1) +
∑
i

log p(yi | xi, θ2)

Hence we can optimize each term separately. For θ1, we have

θ̂1 =

∑
i 1(xi = 1)

N
=
|{i : xi = 1}|

N
=

4

7
= 0.5714
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For θ2, we have

θ̂2 =

∑
i 1(xi = yi)

N
=
|{i : xi = yi}|

N
=

4

7
= 0.5714

Let N(x = 1) and N(x = 0) be the number of x observations with values 1 and 0
respectively; let N(x = y) and N(x 6= y) be the number of observations with equal and
unequal values for x and y respectively. The likelihood is

p(D | θ̂,M2) = (
4

7
)N(x=1)(

3

7
)N(x=0)(

4

7
)N(x=y)(

3

7
)N(x 6=y)

= (
4

7
)4(

3

7
)3(

4

7
)4(

3

7
)3

= (
4

7
)8(

3

7
)6 ≈ 7.04× 10−5

3. Now consider a model with 4 parameters, θ = (θ0,0, θ0,1, θ1,0, θ1,1), representing p(x, y | θ) =
θx,y. (Only 3 of these parameters are free to vary, since they must sum to one.) What is

the MLE of θ? What is p(D | θ̂,M4) where M4 denotes this 4-parameter model?

Solution: The table of joint counts is

y = 0 y = 1

x = 0 2 1
x = 1 2 2

We can think of this as a multinomial distribution with 4 states. Normalizing the counts
gives the MLE:

y = 0 y = 1

x = 0 2/7 1/7
x = 1 2/7 2/7

Let N(x = b1, y = b2) denote the number of observations with x value b1 and y value b2
for b1, b2 ∈ {0, 1}. The likelihood is

p(D | θ̂,M4) = θ
N(x=0,y=0)
00 θ

N(x=0,y=1)
01 θ

N(x=1,y=0)
10 θ

N(x=1,y=1)
11

= (
2

7
)2(

1

7
)1(

2

7
)2(

2

7
)2

= (
2

7
)6(

1

7
)1 ≈ 7.77× 10−5

This likelihood is higher than the previous likelihood, because the model has more pa-
rameters.

4. Suppose we are not sure which model is correct. We compute the leave-one-out cross-
validated log-likelihood of the 2-parameter model and the 4-parameter model as follows:

L(M) =

N∑
i=1

log p(xi, yi | M, θ̂(D−i))
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and θ̂(D−i) denotes the MLE computed on D excluding the ith observation. Which model
will CV pick and why?

Solution: For M4, when we omit case 7, we will have θ̂01 = 0, so p(x7, y7 | M4, θ̂) = 0, so
L(M4) = −∞. However, L(M2) will be finite, since all counts remain non zero when we
leave out a single case.

Hence LOOCV will prefer M2, since M4 is overfitting.

5 The Huber loss in a linear regression setting

In this question, we will investigate the Huber loss in a linear regression setting. Given arbitrary
but fixed parameters λ, µ ∈ R such that λ, µ > 0, the Huber loss is given by the function
hλ,µ : R→ R such that

hλ,µ(z) =

λ
(
|z| − λ

4µ

)
if |z| ≥ λ

2µ ,

µz2 otherwise.

Given a vector z = (z1, . . . , zD) ∈ RD, we extend hλ,µ such that hλ,µ(z) =
∑D

i=1 hλ,µ(zi). Recall
that when dealing with absolute values, the sign function defined as follows is often helpful:

sign(z) =

{
1 if z > 0,

−1 otherwise.

1. Let us fix λ = 4 and µ = 1. Draw three graphs plotting h4,1(z), and the absolute and the
square loss functions. Briefly compare the Huber loss to the absolute and the square loss
functions. What can you say about outliers?

Solution: The absolute loss function is given by f(z) = |z|, and the square loss by g(z) =
z2. The three functions are depicted in Figure 1. For |z| ≥ 2, h4,1 penalises exactly as
the absolute loss, and for |z| < 2 in exactly the same way as the square loss. Just like the
absolute loss, the Huber loss will not be as sensitive to extreme outliers as the square loss,
but still impose a quadratic penality for all z such that |z| < 2. Thus, the Huber loss can
be seen as a combination of the absolute and square loss.

2. Given a training set D = 〈(xi, yi)〉Ni=1, where xi ∈ RD and yi ∈ R, we ignore any noise
terms and define the loss function as

L(w;D) =
1

N

N∑
i=1

hλ,µ(yi −wᵀ · xi),

where w ∈ RD is the model parameter.

Compute ∇wL.
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Figure 1: From left to right: absolute loss, square loss, and Huber loss with λ = 4 and µ = 1.

Solution: Observe that hλ,µ is defined piece-wise by the functions f(z) = λ(|z| − λ
4µ) and

g(z) = µz2. We have

f ′(z) = sign(z)λ and g′(z) = 2µz.

Hence,

h′λ,µ(z) =

sign(z)λ if |z| ≥ λ
2µ

2µz otherwise
.

Let zi(w) = yi −wᵀ · xi, by the chain rule we have

∂hλ,µ(zi(w))

∂wj
= −h′λ,µ(zi(w))xi,j ,

where xi,j denotes the j-th component of xi. Consequently,

∇whλ,µ(zi(w)) = −h′λ,µ(zi(w))xi.

We conclude

∇wL =
1

N

N∑
i=1

∇whλ,µ(yi −wᵀ · xi)

= − 1

N

N∑
i=1

h′λ,µ(yi −wᵀ · xi) · xi.

3. For the remainder of this question, we will discuss using the Huber loss as a regulariser.
Let ` : R → R be an arbitrary loss function, and consider the following regularised loss
functions:

H(z;D) = hλ,µ(z) +
1

N

N∑
i=1

`(yi − zᵀ · xi),

S(v,w;D) = λ||v||1 + µ||w||22 +
1

N

N∑
i=1

`(yi − (v + w)ᵀ · xi).
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Suppose we let λ→∞ in H(z;D) and S(v,w;D). Which types of regularised regression
do we obtain? What happens when µ→∞?

Solution: As λ→∞, we have ||v||1 → 0 for an optimal solution of S(v,w;D). Likewise,
as λ → ∞ we have that hλ,µ(z) converges to µz2, and hence hλ,µ(z) → µ||z||22. The
resulting regularised regression problems are called ridge regression.

Similarly, as µ→∞, we have ||w||22 → 0 for an optimal solution of S(v,w;D). Symmet-
rically, hλ,µ(z)→ λ||z||1. The resulting regularised regression problem is called Lasso.
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