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1 Optimisation Methods for `1-regularisation

1. Show that if you use the absolute loss function with the regularisation term corresponding
to Lasso (called `1 regularization as the penalty is on the `1 norm of the parameter vector
w), the optimization problem can be solved using linear programming. The objective
function is:

L(w) =

N∑
i=1

|wTxi − yi|+ λ

D∑
i=1

|wi| (1.1)

2. If we use the squared loss instead of absolute loss, we are optimising the Lasso objective.
We can no longer use linear programming because of the quadratic term in the objective.
Write the sub-gradient descent update rule with step size η, i.e., write how you would
obtain wt+1 using wt and an (explicitly computed) subgradient of the objective function
at wt and step-size η. The objective function is:

Llasso(w) =

N∑
i=1

(wTxi − yi)2 + λ

D∑
i=1

|wi| (1.2)

2 Maximum Likelihood for Logistic Regression

Consider the sigmoid function, defined as σ(z) = 1
1+e−z . Note that limz→−∞ σ(z) = 0 and

limz→∞ σ(z) = 1. Thus, for binary classification problems, we can compose a linear function
with the sigmoid function to model the probability that a given input x belongs to one of the
two classes {0, 1}. More precisely, for parameter vector w ∈ RD, and input vector x ∈ RD,1

the label y ∈ {0, 1} is given by the following model:

Pr(y = 1 | w,x) = σ(xTw) (2.1)

Pr(y = 0 | w,x) = 1− σ(xTw) (2.2)

1. Show that the derivative of σ, σ′(z) = σ(z)(1− σ(z))

2. Suppose you have i.i.d. data D = 〈(xi, yi)〉Ni=1. Logistic regression is a discriminative model
and we don’t explicitly model the xi, the class labels yi are considered as random variables.
Write the likelihood of observing the labels y1, . . . , yN , given the model parameters w and
the inputs x1, . . . ,xN .

1As always we will assume that an extra dimension which takes value 1 on every data point has been added
to avoid dealing with the constant term separately.
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3. Compute the gradient and Hessian of the negative log-likelihood. Show that the Hessian
is positive semi-definite.

4. What algorithm would you use to find the maximum likelihood estimate and what can
you say about the obtained solution?

3 Support Vector Machines

3.1 SVM Formulation

Let us look at support vector machines (without kernels) and assume that the data is linearly
separable. In order to maximize the margin, a more natural formulation would be the following:
Fix ‖w‖2 = 1, so the distance of x from hyperplane defined by (w, w0) is exactly |x ·w + w0|.
Then, we can define a mathematical program:

maximize α

subject to yi(xi ·w + w0) ≥ α for i = 1, . . . , N

‖w‖ = 1

Unfortunately, the condition ‖w‖ = 1 implies that the set of admissible w do not form a convex
set. Argue that relaxing the constraint to be ‖w‖ ≤ 1 does not change the optimal solution
of the above program. Then show that this formulation is equivalent to the one we considered
in the lectures, i.e., show that an optimal solution for one can be used to obtain an optimal
solution for the other.

3.2 Simple Observations

1. Suppose we use the SVM formulation for separable data, and that the data indeed is
linearly separable. Recall that in this case, support vectors are those points xi in the
dataset those for which yi(w

∗ ·xi +w∗0) = 1, where w∗, w∗0 is the max-margin hyperplane.
If your dataset consists of N points in D dimensional space, what is the maximum number
of support vectors possible? the minimum?

2. Suppose you use the primal SVM formulation for the non-separable case, i.e., with slack
variables ζi, but your data is actually linearly separable. Do you always recover the “true”
max-margin separating hyperplane?

3. Given a training set D = 〈xi, yi〉Ni=1, prove that in the primal SVM formulation the sum of
slacks

∑
1≤i≤N ζi of an optimal solution in the non-separable case gives an upper bound

on the number of misclassified training examples.

4 Reducing the cost of linear regression for large D, small N

The ridge method is a regularized version of least squares with objective function:

min
w∈RD

‖y −Xw‖22 + λ ‖w‖22 (4.1)
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Here λ is a scalar, the input matrix X ∈ RN×D and the output vector y ∈ RN . The parameter
vector w ∈ RD is obtained by differentiating the cost function, yielding the normal equations

(XTX + λID)w = XTy, (4.2)

where ID is the D ×D identity matrix. The predictions ŷ = ŷ(X∗) for new test points X∗ ∈
RN∗×D are obtained by evaluating the hyperplane

ŷ = X∗w = X∗(X
TX + λID)−1XTy = Hy. (4.3)

The matrix H is known as the hat matrix because it puts a “hat” on y.

1. Show that the solution can be written as w = XTw̃, where w̃ = λ−1(y −Xw).

2. Show that w̃ can also be written as follows: w̃ = (XXT + λIN )−1y and, hence the
predictions can be written as follows:

ŷ = X∗w = X∗X
Tw̃ = [X∗X

T]([XXT] + λIN )−1y. (4.4)

(This an awesome trick because if N = 20 patients with D = 10, 000 gene measure-
ments, the computation of w̃ only requires inverting the N ×N matrix, while the direct
computation of w would have required the inversion of a D ×D matrix.)

Remark: Observe that this is the same idea as the kernel trick used in the context of SVMs. In
general, the kernel trick is widely applicable and should be used whenever the amount of data
is significantly smaller than the dimension of the data, either to begin with or because of basis
expansion.

5 Linear algebra revision: Singular Value Decomposition (SVD)

Note: This question is intended for self-study and will only be discussed in class if time permits.
We will use SVD frequently in Lectures 17, 18, so please make sure you revise this before then.

Once you start looking at raw data, one of the first things you notice is how redundant it
often is. In images, it’s often not necessary to keep track of the exact value of every pixel; in
text, you don’t always need the counts of every word. Correlations among variables also create
redundancy. For example, if every time a gene, say A, is expressed another gene B is also
expressed, then to build a tool that predicts patient recovery rate from gene expression data, it
seems reasonable to remove either A or B. Most situations are not as clear-cut.

In this question, we’ll look at eigenvalue methods for factoring and projecting data matrices
(images, document collections, image collections), with an eye to one of the most common uses:
Converting a high-dimensional data matrix to a lower-dimensional one, while minimizing the
loss of information.

The Singular Value Decomposition (SVD) is a matrix factorization that has many applica-
tions in information retrieval, collaborative filtering, least-squares problems and image process-
ing.
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Let X be an n × n matrix of real numbers; that is X ∈ Rn×n. Assume that X has n
eigenvalue-eigenvector pairs (λi,qi):

Xqi = λiqi i = 1, . . . , n

If we place the eigenvalues λi ∈ R into a diagonal matrix Λ and gather the eigenvectors qi ∈ Rn

into a matrix Q, then the eigenvalue decomposition of X is given by

X
[

q1 q2 . . . qn

]
=

[
q1 q2 . . . qn

]

λ1

λ2
. . .

λn

 (5.1)

or, equivalently,
X = QΛQ−1.

For a symmetric matrix, i.e. X = XT, one can show that X = QΛQT. But what if X is not a
square matrix? Then the SVD comes to the rescue. Given X ∈ Rm×n with m ≥ n, the SVD of
X is a factorization of the form

X = UΣVT.

These matrices have some interesting properties:

• Σ ∈ Rn×n is diagonal with positive entries (singular values σ in the diagonal).

• U ∈ Rm×n has orthonormal columns: uT
i uj = 1 only when i = j and 0 otherwise.

• V ∈ Rn×n has orthonormal columns and rows. That is, V is an orthogonal matrix, so
V−1 = VT.

Often, U is m-by-m, not m-by-n. The extra columns are added by a process of orthogonal-
ization. To ensure that dimensions still match, a block of zeros is added to Σ. For our purposes,
however, we will only consider the version where U is m-by-n, which is known as the thin-SVD.

It will turn out useful to introduce the vector notation:

Xvj = σjuj j = 1, 2, . . . , n

where u ∈ Rm are the left singular vectors, σ ∈ [0,∞) are the singular values and v ∈ Rn are
the right singular vectors. That is,

X
[

v1 v2 . . . vn

]
=

[
u1 u2 . . . un

]

σ1

σ2
. . .

σn

 (5.2)
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or XV = UΣ. Note that there is no assumption that m ≥ n or that X has full rank. In
addition, all diagonal elements of Σ are non-negative and in non-increasing order:

σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0

where p = min (m,n).

Question: Outline a procedure for computing the SVD of a matrix X. Hint: assume you can
find the eigenvalue decompositions of the symmetric matrices XTX and XXT.
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