
Machine Learning
Michaelmas Term 2021

Week 8

Problem Sheet 4

1 Backpropagation for Multiclass Logistic Regression

We can view multiclass logistic regression as a simple neural network with no hidden layer. Let
us suppose that the inputs are D dimensional and that there are C classes. Then the input layer
has D units, simply the inputs x1, . . . , xD. The output layer has C units; there is full connection
between the layers, i.e., every input unit is connected to every output unit. Bias terms for each
unit in the output layer are added separately. Finally, there is a non-linear activation function
on the output layer, the softmax function. Pictorially, we may represent the neural network as
follows:

x1

x2

...

xD

z1

...

zC

a1

...

aC

S
O
F
T
M
A
X

Dropping superscripts to denote layers, as they are unnecessary in this case, and using the
notation in the lectures, we have:

z = Wx + b (1.1)

a = softmax(z) (1.2)

Above W is a C×D matrix, and b is a column vector in C dimensions. Recall that the softmax
function is defined as:

softmax(z)i =
ezi∑C
l=1 e

zl
(1.3)

For a point (x, y) in the training data, y ∈ {1, . . . , C}. The model parameters to be learnt
are W and b. We will use the cross entropy loss function, so the contribution of the point (x, y)
to the objective function is given by:

`(W,b;x, y) = − log ay (1.4)

Write the expressions for ∂`
∂a , ∂`∂z , ∂`

∂W and ∂`
∂b . You should use the backpropagation equations

to obtain these derivatives. You should express these derivatives for a single training point (x, y).
When optimising, you’ll usually average the gradient over a mini-batch before actually updating
the parameters using a gradient step.

Page 1

Machine Learning
Michaelmas Term 2021

Week 8

2 Digit Classification using MLPs

In this problem, we will consider a neural network to classify handwritten digits. You will also
use this dataset in your practical this week. In the practical, you will implement a convolutional
neural network. Here, we consider networks with fully connected layers and a different way to
encode the targets (and the outputs of the network). You are strongly encouraged to implement
these networks in tensorflow as well, to help you answer this question.

The inputs are vectors of length 784 (obtained from 28 × 28 grey pixel images). Rather
than output a class, the network will output a vector ŷ ∈ R10. The target will be represented
as a one-hot encoding, e.g., if the label is 3, we will use the vector [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]T (by
convention the digit 0 will be the last component in the encoding, not the first).

The data fed into the neural network consists of 〈(xi,yi)〉, where xi ∈ R784 and yi ∈ {0, 1}10
is the one-hot encoding of the digit. The output of the neural network is also a vector ŷ ∈ R10.
The parameters in the network are the weights Wi and biases bi for layers in the network. We’ll
train the networks by minimizing the squared loss objective (with respect to the parameters of
the neural network):

L(Wi,bi) =
N∑
i=1

(ŷi − yi)
2

The neural network to be used is shown in Figure 1. There are three layers, one input layer,
one hidden layer and one output layer. The gradient of the loss function with respect to the
parameters can be computed using the backpropagation algorithm as we’ve seen in the lectures.
Answer the following questions:

1. To reduce the size of the network and increase efficiency, your colleague suggests using a
binary encoding for the outputs instead of one-hot encoding; so 0 is encoded as 0000, 1
as 0001, and so on. In this case, the output layer only has four neurons rather than 10.
Perhaps you could also reduce the number of neurons in the middle layer. What do you
think about this suggestion?

2. Show that if you have an already trained neural network that has high accuracy with
the one-hot encoding, you can design a network that uses binary encoding and achieves
roughly the same error. (Hint: You may need to add an additional layer.)

3. What do you think would happen if you tried to train the neural network you suggested
in the previous part directly (rather than adding the last layer by design)?

3 Neural Nets with Linear Activation Functions

Consider a neural network for multiclass classification. Let us assume that the input is 784
dimensional, we’ll us one hidden layer, and there are 10 classes, e.g., digits. For the hidden unit
we’ll use the “identity” activation function, i.e., f(x) = x. Answer the following questions:

1. Suppose you use 25 hidden units and no regularization. For the output layer, we’ll use
a softmax non-linearity as we did for multiclass logistic regression in Problem 1. An

Page 2

Machine Learning
Michaelmas Term 2021

Week 8

x1

x2

x3

...

x782

x783

x784

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

Hidden
layer

Input
layer

Output
layer

Figure 1: Three-layer neural network for handwritten digit classification.

alternative to such a neural network would be to just use the multiclass logistic regression
approach directly. Which of the two models is more powerful, i.e., able to represent
possibly more complex relationships between inputs and outputs? (For this part, ignore
the difficulty of training the models.)

2. Now suppose you only use 4 hidden units. What can you say about the relative power of
the two models? Which model would you prefer?

3. For the network in Part 2, if you use the cross entropy loss function on the output layer,
do you get a convex optimisation problem?

Page 3

Machine Learning
Michaelmas Term 2021

Week 8

4 Neural Networks as Universal Function Approximators

As remarked in the lectures, neural networks are universal function approximators. In this
question, we will discuss some steps for showing this result and what it means to be a universal
function approximator a bit further.

Subsequently, in all questions we will exclusively consider neural networks with

• a single input,

• a single hidden layer with an arbitrary number of neurons with ReLU activation functions,
and

• an output layer consisting of a single neuron with the identity activation function.

Consequently, the network implements a function h : R → R. Whenever you are asked below
to provide a neural network, your network is required to have those properties. The following
picture shows an example of such a network with two neurons in the hidden layer:

1. Write down the model output ŷ as a function of x by application of the forward equations.

2. Set w2
00 = w2

10 = w3
00 = 1, w3

01 = −1, b20 = −3, b21 = −4, and b30 = 0. Compute ŷ for the
inputs x1 = 3 and x2 = 4. State and sketch the function h : R → R implemented by the
network.

3. Given constants c < d, provide a neural network which implements a function hc,d : R→ R
such that for all x ∈ R

hc,d(x) =

0 if x < c
1
d−c · x−

c
d−c if c ≤ x ≤ d

1 if x > d.

4. Let f : R→ R be any function such that on the interval [0, 1], f is continuous and bounded,
i.e., there is some constant c ≥ 0 such that |f(x)| ≤ c for all x ∈ [0, 1]. Give a high-level
yet mathematically well-founded argument why the class of neural networks considered in
this question can approximate f arbitrarily close. More formally, given f and ε > 0, we
can provide a neural network implementing some h : R → R such that |f(x) − h(x)| < ε
for all x ∈ [0, 1].

Page 4

Machine Learning
Michaelmas Term 2021

Week 8

5. Argue that for any choice of weights and biases of the network in the figure above, there
exists some x0 after which h behaves like a linear function, i.e., there is some f(x) = m·x+n
such that for all x ≥ x0, h(x) = f(x). Is the same true if there are arbitrarily many neurons
in the hidden layer?

6. You have become head of a venture capital firm investing in promising future technologies.
A new start-up called BrainDrain is applying for funding at your firm. They claim that
using a blockchain-based in-the-cloud approach, they have trained a neural network that,
on an input x, outputs a value greater than 0 if x is a prime number and 0 otherwise.
Will you invest in this start-up?

5 Recurrent Neural Networks

1. The Truncated Backpropagation Through Time (TBPTT) algorithm for training Recur-
rent Neural Networks (RRNs) truncates the gradient calculation to a maximum of k steps.
Compare a feed forward neural n-gram model trained with SGD and an RNN language
model trained with TBPTT truncated to n steps. Does the truncation make the RNN
equivalent to the n-gram model or can the RNN learn dependencies longer than n, either
in theory or in practice? Discuss.

2. The BPTT algorithm computes the derivates of the unrolled sequence in reverse order,
iteratively computing the following recurrence,

∇θF =
N∑
n=1

∂F
∂hn

∂hn
∂θn

=
N∑
n=1

[
∂F

∂hn+1

∂hn+1

∂hn
+
∂Fn
∂hn

]
∂hn
∂θn

.

Where F =
∑

nFn and the θn notation refers to the copy of the RNN parameters at
timestep n in the unrolled computation graph. The complete gradient for the parameters
θ is the sum of gradients for each copy.

An alternative to backpropagation is to compute the partial derivates using an in order
recurrence,

∇θF =
N∑
n=1

∂Fn
∂hn

∂hn
∂θ

=
N∑
n=1

∂Fn
∂hn

[. . .] .

Complete this equation by filling in the missing partial derivatives in the brackets [. . .].
Using the completed equation, propose an alternative SGD training algorithm to BPTT.
What is the computational and memory complexity of this algorithm, and what are its
advantages and disadvantages versus BPTT?

Page 5

