
Machine Learning
Michaelmas Term 2021

Week 8

Problem Sheet 4 Solutions

1 Backpropagation for Multiclass Logistic Regression

We can view multiclass logistic regression as a simple neural network with no hidden layer. Let
us suppose that the inputs are D dimensional and that there are C classes. Then the input layer
has D units, simply the inputs x1, . . . , xD. The output layer has C units; there is full connection
between the layers, i.e., every input unit is connected to every output unit. Bias terms for each
unit in the output layer are added separately. Finally, there is a non-linear activation function
on the output layer, the softmax function. Pictorially, we may represent the neural network as
follows:

x1

x2

...

xD

z1

...

zC

a1

...

aC

S
O
F
T
M
A
X

Dropping superscripts to denote layers, as they are unnecessary in this case, and using the
notation in the lectures, we have:

z = Wx + b (1.1)

a = softmax(z) (1.2)

Above W is a C×D matrix, and b is a column vector in C dimensions. Recall that the softmax
function is defined as:

softmax(z)i =
ezi∑C
l=1 e

zl
(1.3)

For a point (x, y) in the training data, y ∈ {1, . . . , C}. The model parameters to be learnt
are W and b. We will use the cross entropy loss function, so the contribution of the point (x, y)
to the objective function is given by:

`(W,b;x, y) = − log ay (1.4)

Write the expressions for ∂`
∂a , ∂`∂z , ∂`

∂W and ∂`
∂b . You should use the backpropagation equations

to obtain these derivatives. You should express these derivatives for a single training point (x, y).
When optimising, you’ll usually average the gradient over a mini-batch before actually updating

Page 1

Machine Learning
Michaelmas Term 2021

Week 8

the parameters using a gradient step.

Solution: Let us first compute ∂`
∂a . We have:

∂`
∂aj

=

0 if j 6= y

− 1
aj

if j = y
(1.5)

And so,

∂`
∂a = [0, . . . ,− 1

ay
, . . . , 0] (1.6)

where the yth coordinate of ∂`
∂a = − 1

ay
and the rest are 0.

Note that,

aj =
ezj∑C
l=1 e

zl
(1.7)

Thus, we can compute the derivatives

∂aj
∂zi

=


− eziezj(∑C

l=1 e
zl

)2 = −aiaj if i 6= j(∑C
l=1 e

zl

)
ezj−(ezj)2(∑C

l=1 e
zl

)2 = (1− aj)aj if i = j
(1.8)

Then, by applying chain rule,

∂`
∂z = ∂`

∂a ·
∂a
∂z

=
[
a1, a2, . . . , ay − 1, . . . , aC

]
(1.9)

Only the yth coordinate of ∂`
∂z is ay − 1, the ith coordinate for i 6= y is ai.

Using the backpropagation equations, we have:

∂`
∂W =

(
x ∂`∂z

)T
(1.10)

∂`
∂b = ∂`

∂z (1.11)

2 Digit Classification using MLPs

In this problem, we will consider a neural network to classify handwritten digits. You will also
use this dataset in your practical this week. In the practical, you will implement a convolutional
neural network. Here, we consider networks with fully connected layers and a different way to
encode the targets (and the outputs of the network). You are strongly encouraged to implement
these networks in tensorflow as well, to help you answer this question.

Page 2

Machine Learning
Michaelmas Term 2021

Week 8

The inputs are vectors of length 784 (obtained from 28 × 28 grey pixel images). Rather
than output a class, the network will output a vector ŷ ∈ R10. The target will be represented
as a one-hot encoding, e.g., if the label is 3, we will use the vector [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]T (by
convention the digit 0 will be the last component in the encoding, not the first).

The data fed into the neural network consists of 〈(xi,yi)〉, where xi ∈ R784 and yi ∈ {0, 1}10
is the one-hot encoding of the digit. The output of the neural network is also a vector ŷ ∈ R10.
The parameters in the network are the weights Wi and biases bi for layers in the network. We’ll
train the networks by minimizing the squared loss objective (with respect to the parameters of
the neural network):

L(Wi,bi) =
N∑
i=1

(ŷi − yi)
2

The neural network to be used is shown in Figure 1. There are three layers, one input layer,
one hidden layer and one output layer. The gradient of the loss function with respect to the
parameters can be computed using the backpropagation algorithm as we’ve seen in the lectures.
Answer the following questions:

1. To reduce the size of the network and increase efficiency, your colleague suggests using a
binary encoding for the outputs instead of one-hot encoding; so 0 is encoded as 0000, 1
as 0001, and so on. In this case, the output layer only has four neurons rather than 10.
Perhaps you could also reduce the number of neurons in the middle layer. What do you
think about this suggestion?

Solution: There is nothing wrong with the suggestion as such. However, one might wonder
whether there are some unnecessary relationships between the output labels. For example
7 and 5 have embeddings that are closer to each other than 7 and 8. Since our purpose is
to have all classes distinguished, we should wonder what effects these embeddings might
have. There are several other reasons one could come up with for not preferring binary
embeddings; the ultimate test is in trying and seeing if it succeeds or fails. (See (Nielsen,
2015, Chap 1) for some more discussion.)

The reasons for preferring binary embeddings is simple, they are much more space efficient.
So if we could train networks to get high enough accuracy they would be preferred.

2. Show that if you have an already trained neural network that has high accuracy with
the one-hot encoding, you can design a network that uses binary encoding and achieves
roughly the same error. (Hint: You may need to add an additional layer.)

Solution: Denote the network that outputs a one-hot encoding by N . Assuming that
exactly one neuron fires in the output layer of N , we can add an additional layer to
implement binary embeddings simply by adding “or” gates encoded as sigmoid neurons
(Sheet 1). For example the first bit should be 1 if one of neurons corresponding to
1, 3, 5, 7, 9 fired in the previous layer, the second bit should be 1 if one of the neurons
corresponding to 2, 3, 6, 7 fired in the previous layer, and so on.

3. What do you think would happen if you tried to train the neural network you suggested
in the previous part directly (rather than adding the last layer by design)?

Page 3

Machine Learning
Michaelmas Term 2021

Week 8

x1

x2

x3

...

x782

x783

x784

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

Hidden
layer

Input
layer

Output
layer

Figure 1: Three-layer neural network for handwritten digit classification.

Solution: The short answer is we have to test and see. With one-hot embedding with
one hidden layer of about 100 nodes, I was able to get test accuracy of about 96%. With
binary embedding and one hidden layer of 100 nodes, the test accuracy was only 90%.
By adding an extra layer of 10 nodes and some regularization I was able to push it up to
93.5%, still somewhat worse than that with one-hot embedding.

As a simple starting point, you can even check what happens with no hidden layer. The
one-hot embedding case still gave me something reasonable, close to 90% accuracy. The
binary case was much worse, about 75%, though still much better than the 10% accuracy
that one would get by random guessing!

Page 4

Machine Learning
Michaelmas Term 2021

Week 8

3 Neural Nets with Linear Activation Functions

Consider a neural network for multiclass classification. Let us assume that the input is 784
dimensional, we’ll us one hidden layer, and there are 10 classes, e.g., digits. For the hidden unit
we’ll use the “identity” activation function, i.e., f(x) = x. Answer the following questions:

1. Suppose you use 25 hidden units and no regularization. For the output layer, we’ll use
a softmax non-linearity as we did for multiclass logistic regression in Problem 1. An
alternative to such a neural network would be to just use the multiclass logistic regression
approach directly. Which of the two models is more powerful, i.e., able to represent
possibly more complex relationships between inputs and outputs? (For this part, ignore
the difficulty of training the models.)

Solution: Since we are using the identity activation function, we have the following:

z2 = W2x (3.1)

a2 = z2 (3.2)

z3 = W3a2 = W3z2 = W3W2x (3.3)

Thus, we see that the components of z3, the pre-activations of the output layer are just
a linear function of the input x. Thus, the two models are exactly the same in their
representation power.

2. Now suppose you only use 4 hidden units. What can you say about the relative power of
the two models? Which model would you prefer?

Solution: Let us focus on Eq. (3.3). When the hidden layer has only 4 units, W2 is a
4× 784 matrix and W3 is a 10× 4 matrix. Thus, W3W2 is a 10× 784 matrix of rank 4.

On the other hand, if we use multiclass logistic regression, we’d have z3 = Wx, where W
is a 10 × 784 matrix, without any restriction on the rank. Thus, the multiclass logistic
regression model is in fact more powerful, in terms of representation capabilities.

When it comes to choosing a model, representation power is only one aspect to consider.
The model with less representation power may be less prone to overfitting. In fact we can
view the 784-4-10 structure of the network as imposing an information bottleneck in the
middle, while still expressing a linear relationship between the inputs and outputs. Thus,
which model one prefers depends on many factors, such as amount of data, the expected
relationship between input and output, etc.

3. For the network in Part 2, if you use the cross entropy loss function on the output layer,
do you get a convex optimisation problem?

Solution: The answer is no. There are probably many ways to see this, but the simplest
one is that the model is invariant to permuting the weights (both incoming and outgoing)
on the four hidden units. Thus, whatever the global minimum, there are at least 4! of
them and in different parts of the optimisation landscape. So the optimisation problem is
not convex.

Page 5

Mingfei SUN

Machine Learning
Michaelmas Term 2021

Week 8

More formally, if W2 and W3 are the weights of the neural network at a non-trivial
optima α, then −W2 and −W3 gives the same optima α. For the objective function
to be convex the objective must be equal to α on the line joining these two solutions.
Using [W2;W3] to denote the concatenation of all of the weights into one long vector of
dimension 784× 4 + 4× 10:

α = L
(
λ
[
W2;W3

]
+ (1− λ)

[
−W2;−W3

]
,X,y

)
, ∀λ s.t. 0 ≤ λ ≤ 1. (3.4)

The midpoint of this line would set all the weights to zero, which cannot be the non-trivial
optima α. Thus the objective is not convex.

4 Neural Networks as Universal Function Approximators

As remarked in the lectures, neural networks are universal function approximators. In this
question, we will discuss some steps for showing this result and what it means to be a universal
function approximator a bit further.

Subsequently, in all questions we will exclusively consider neural networks with

• a single input,

• a single hidden layer with an arbitrary number of neurons with ReLU activation functions,
and

• an output layer consisting of a single neuron with the identity activation function.

Consequently, the network implements a function h : R → R. Whenever you are asked below
to provide a neural network, your network is required to have those properties. The following
picture shows an example of such a network with two neurons in the hidden layer:

1. Write down the model output ŷ as a function of x by application of the forward equations.

Solution: We have z2 = [z20 , z
2
1]ᵀ = [b20+w

2
00·x, b21+w2

10·x]ᵀ, a2 = [a20, a
2
1]
ᵀ = [max{0, z20},max{0, z21}]ᵀ,

ŷ = b30 + w3
00 · a20 + w3

01 · a21, and hence

ŷ = b30 + w3
00 ·max

{
0, b20 + w2

00 · x
}

+ w3
01 ·max

{
0, b21 + w2

10 · x
}
.

Page 6

Machine Learning
Michaelmas Term 2021

Week 8

-0.2
	0

	0.2
	0.4
	0.6
	0.8
	1

	1.2

-10 -5 	0 	5 	10 	15

(x	<	3	?	0	:	(x	-	3))	-	(x	<	4	?	0	:	(x	-	4))

Figure 2: Function h(x).

2. Set w2
00 = w2

10 = w3
00 = 1, w3

01 = −1, b20 = −3, b21 = −4, and b30 = 0. Compute ŷ for the
inputs x1 = 3 and x2 = 4. State and sketch the function h : R → R implemented by the
network.

Solution: The function is h(x) = max{0, x− 3} −max{0, x− 4} which equals

h(x) =


0 if x < 3

x− 3 if 3 ≤ x ≤ 4

1 if x > 4.

The function is plotted in Figure 2. Hence h(x1) = 0 and h(x2) = 1.

3. Given constants c < d, provide a neural network which implements a function hc,d : R→ R
such that for all x ∈ R

hc,d(x) =


0 if x < c
1
d−c · x−

c
d−c if c ≤ x ≤ d

1 if x > d.

Solution: We observe that

hc,d(x) =
1

d− c
·max {0, x− c} − 1

d− c
·max{0, x− d}.

Hence, the function can be implemented using the neural network with two hidden layers
given in the question by setting

w2
00 = w2

10 = 1 w3
00 = 1/(d− c) w3

01 = −1/(d− c)
b20 = −c b21 = −d b30 = 0.

4. Let f : R→ R be any function such that on the interval [0, 1], f is continuous and bounded,
i.e., there is some constant c ≥ 0 such that |f(x)| ≤ c for all x ∈ [0, 1]. Give a high-level

Page 7

Machine Learning
Michaelmas Term 2021

Week 8

yet mathematically well-founded argument why the class of neural networks considered in
this question can approximate f arbitrarily close. More formally, given f and ε > 0, we
can provide a neural network implementing some h : R → R such that |f(x) − h(x)| < ε
for all x ∈ [0, 1].

Solution: We first observe that, analogously to the previous question, for any c < d we
can derive a neural network hc,d such that

−hc,d(x) = hc,d(x) =


0 if x < c
1
c−d · x−

c
c−d if c ≤ x ≤ d

−1 if x > d.

For i > 0, let gc,d,i := hc,d + hc+i,d+i. Observe that gc,d,i can be implemented as a neural
network, and that gi creates a spike of height one and length i between c and d+ i when
d− c→ 0. In order to approximate f , we split [0, 1] into a finite number of intervals such
that for any interval [k, `] and x ∈ [k, `], we have |f(k + 1/2(` − k)) − f(x)| < ε (this
is possible since f is continuous and bounded). Denote by [k1, `1], . . . , [km, `m] the thus
obtained intervals, and define the h as

h =

m∑
i=1

f(ki + 1/2(`i − ki)) · gki,ki+µ,(`i−ki)

where µ is infinitesimally close to zero. Again, h can be implemented by a neural network.
This function almost achieves our goal, however it will not approximate f well-enough
between the consecutive intervals. With a slightly more sophisticated construction, this
problem can be circumvented, but this would go beyond the scope of this problem sheet.
Moreover, the approach generalises to arbitrary functions f : Rm → Rn.

5. Argue that for any choice of weights and biases of the network in the figure above, there
exists some x0 after which h behaves like a linear function, i.e., there is some f(x) = m·x+n
such that for all x ≥ x0, h(x) = f(x). Is the same true if there are arbitrarily many neurons
in the hidden layer?

Solution: For a sufficiently large x0, g(x) = max{0, b+ w · x} will either be 0 or b+ w · x
for all x ≥ x0, which in both cases is a linear function. Since linear functions are closed
under addition and multiplication of constants, the statement follows. Obviously, the
same argument works in the presence of arbitrarily many neurons in the hidden layer.

6. You have become head of a venture capital firm investing in promising future technologies.
A new start-up called BrainDrain is applying for funding at your firm. They claim that
using a blockchain-based in-the-cloud approach, they have trained a neural network that,
on an input x, outputs a value greater than 0 if x is a prime number and 0 otherwise.
Will you invest in this start-up?

Solution: In the previous question, we have seen that any neural network (as considered in
this question) will eventually implement a linear function for sufficiently large inputs. Thus
it will either classify all numbers above the threshold as prime or not prime, respectively.
The claim made by the start-up is bogus and it would not be wise to invest in it.

Page 8

Machine Learning
Michaelmas Term 2021

Week 8

5 Recurrent Neural Networks

1. The Truncated Backpropagation Through Time (TBPTT) algorithm for training Recur-
rent Neural Networks (RRNs) truncates the gradient calculation to a maximum of k steps.
Compare a feed forward neural n-gram model trained with SGD and an RNN language
model trained with TBPTT truncated to n steps. Does the truncation make the RNN
equivalent to the n-gram model or can the RNN learn dependencies longer than n, either
in theory or in practice? Discuss.

Solution: The RNN language model can in theory learn dependencies longer than n.
TBPTT only truncates the backward pass, the forward pass is still performed exactly as
this can be done efficiently by initialising the first step in each mini-batch with the final
hidden state from the previous batch. However, as we saw in the lectures, the vanishing
gradient problem can severely limit the ability of an RNN to learn long range dependencies
in practice.

2. The BPTT algorithm computes the derivates of the unrolled sequence in reverse order,
iteratively computing the following recurrence,

∇θF =

N∑
n=1

∂F
∂hn

∂hn
∂θn

=

N∑
n=1

[
∂F

∂hn+1

∂hn+1

∂hn
+
∂Fn
∂hn

]
∂hn
∂θn

.

Where F =
∑

nFn and the θn notation refers to the copy of the RNN parameters at
timestep n in the unrolled computation graph. The complete gradient for the parameters
θ is the sum of gradients for each copy.

An alternative to backpropagation is to compute the partial derivates using an in order
recurrence,

∇θF =

N∑
n=1

∂Fn
∂hn

∂hn
∂θ

=

N∑
n=1

∂Fn
∂hn

[. . .] .

Complete this equation by filling in the missing partial derivatives in the brackets [. . .].
Using the completed equation, propose an alternative SGD training algorithm to BPTT.
What is the computational and memory complexity of this algorithm, and what are its
advantages and disadvantages versus BPTT?

Solution: The missing term is ∂hn
∂θ and the completed equation is:

∇θF =

N∑
n=1

∂Fn
∂hn

∂hn
∂θ

=

N∑
n=1

∂Fn
∂hn

[
∂hn
∂θn

+
∂hn
∂hn−1

∂hn−1
∂θ

]
. (5.1)

BPTT is an example of reverse model automatic differentiation. The alternative using
Equation 5.1 is an example of forward mode automatic differentiation and we can use
this to calculate the gradient needed for SGD by recursively computing ∂hn

∂θ from ∂hn−1

∂θ ,

summing ∂Fn
∂hn

∂hn
∂θ as we go. At the end of the sequence we will have accumulated the

complete gradient update. The application of this algorithm to RNNs is known as Real

Page 9

Machine Learning
Michaelmas Term 2021

Week 8

Time Recurrent Learning (RTRL) and there has been a significant amount of research
attempting to use it in practice. The key advantage of RTRL is to realise that we do not
need to wait until the end of the sequence to make a weight update, as we have a complete
gradient at each timestep, we can do an SGD update after every input (this is where the
real time in the name comes from!). However, it is also importent to understand that

every time we do an SGD update our estimate of ∂hn−1

∂θ becomes ‘stale’, i.e. it will not be
exactly correct with respect to the new weights. If our SGD steps are small enough this
is not normally a big problem.

The reason that RTRL is not the standard algorithm for training RNNs is the high
computational and space complexity. The term ∂hn

∂θ , which must be stored and passed
between timesteps, is a matrix of |hn| × |θ|, where |hn| is normally in the 100s or 1000s,

while |θ| could be millions or billions. Compare this to the term ∂hn+1

∂hn
in BPTT which is

normally orders of magnitude smaller. Computationally, calculating ∂hn
∂hn−1

∂hn−1

∂θ requires

multiplying a matrix of size |hn| × |hn| by one of |hn| × |θ|, which has much higher
complexity than the calculations for BPTT.

References

Michael Nielsen. Neural Networks and Deep Learning. 2015. Online Book available at: http:

//neuralnetworksanddeeplearning.com/.

Page 10

