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In this tutorial, we will familiarize with tabular methods for reinforcement learning. In
Part I, we will discuss how to evaluate and find optimal policy, both when the model of
the world is available and when it is not. The exercises marked with BONUS are optional
– they cover and provide guidance for deriving some fundamental results, and you can try
solving them after the tutorial or instead of Part II if you are more interested in theory
of reinforcement learning. In Part II, we will implement value iteration and Q-learning
algorithms on some simple gridworld environments and Pacman. We will send out the
solutions later today.

Part I

Exercise 1. Simple MDP.
Consider a simple n-state MDP shown in the Figure 1. The agent starts at state s1, and

has two actions available in each of the states si, with reward 0. Taking any action from state
G results in a reward r > 0 and the agent stays in state G. The actions are deterministic
and always succeed. Assume a discount factor γ < 1.

(i) What is optimal action at any state si? Find the optimal value function for all states
si and the goal state G. Does the optimal policy depend on the discount factor γ? .

(ii) How will the optimal value function change with the addition of a constant factor β to
all rewards? How about optimal policy?

(iii) How will the optimal value function and policy change if all rewards are both shifted
by a constant factor β and scaled by a constant factor α?

r → α(r + β)
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Exercise 2. Policy evaluation.
Consider the Bellman equation for a state value of policy π at state s ∈ S with actions

a ∈ A (considering infinite horizon only):

V π(s) =
∑
a∈A

π(a|s)
∑
s′∈S

P (s′|s, a)[R(s′, s, a) + γV π(s′)]. (1)

(i) Define vπi , rπi and P π
i,j, such that equation 1 can be expressed in a matrix form:

vπ = rπ + γP πvπ. (2)

(ii) BONUS. Show the linear equation (2) always has a unique analytical solution: vπ =
(I − γP π)−1rπ. HINT: you will need to show that P π is a row-stochastic matrix, the
absolute value of all eigenvalues λi of a row-stochastic matrix satisfy property |λi| ≤ 1
and || · ||∞ norm of a row-stochastic matrix is 1, and matrix I − γP π is nonsingular for
any 0 < γ < 1.

(iii) BONUS. Show that iterative policy evaluation algorithm with tolerance level ε always
terminates. Show the solution obtained this way, v′ = v(k) such that ||v(k)−v(k−1)||∞ <
ε, will have an error bound by ||vπ − v′||∞ ≤ εγ

1−γ . HINT: Recall the properties of
contractions on Banach spaces. You will need to show that Bellman operator Bπv =
rπ + γP πv is a strict contraction on a vector space R|S| equipped with the || · ||∞ norm.

Exercise 3. Policy and value iteration.
Recall the policy and value iteration algorithms. Policy iteration consists of two steps:

policy evaluation and policy improvement. Value iteration integrates the two steps into one
update rule:

V (k+1)(s) = max
a

[R(s, a) + γ
∑
s′∈S

P (s′|s, a)V (k)(s′)]. (3)

(i) For an MDP with an infinite horizon and static transition probability, when is the op-
timal policy π∗(s) = arg maxπ V

π(s) deterministic? Can the optimal policy be stochas-
tic? Under what conditions? Explain your answer.

(ii) BONUS. What is the complexity of policy evaluation and policy improvement steps
of policy iteration? How does it compare to the analytical solution which involves
computing a matrix inverse?

(iii) BONUS. Prove the policy improvement theorem. If π′(a|s) is a greedy policy with
respect to Qπ(s, a) = R(s, a) + γ

∑
s′∈S P (s′|s, a)V π(s), it follows that V π′

(s) ≥ V π(s),
for each s ∈ S.

(iv) BONUS. Prove convergence of value iteration algorithm to an optimal value function
V ∗(s). HINT: Similar to the proof of policy evaluation convergence, you will need to
show that Bellman optimality operator, B∗V (s) = maxa[R(s, a)+γ

∑
s′∈S P (s′|s, a)V (s′)],

is a strict contraction on a vector space R|S| equipped with the || · ||∞ norm.
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Exercise 4. Control without a model.
Recall constant-α MC and TD(0) control algorithms. The two stochastic methods are

iteratively estimating the value function:

V̂ π(st)→ V̂ π(st) + α(R̂t − V̂ π(st)), (4)

relying on the following estimates of return which are used as a target:

R̂MC
t =

H∑
i=t

γi−trt, (5)

R̂TD
t = rt + γV̂ π(st+1), (6)

where rt are rewards observed following a target policy π and α > 0 is the update size.

(i) How do Monte Carlo and TD(0) estimators of return compare in terms of bias and
variance? Explain your answer.

(ii) Why is it necessary to use an ε-greedy policy? Recall the difference between target pol-
icy and behaviour policy. Under what conditions can a policy be used as a behavioural
policy?

(iii) Why can Q-learning be considered an off-policy method? What are some advantages
of off-policy methods?

(iv) BONUS. Prove the ε-greedy policy improvement theorem. If π′ is an ε-greedy policy
w.r.t. qπ, where π is an ε-soft policy, it follows that V π′

(s) ≥ V π(s), for each s ∈ S.
HINT: The proof is very similar to the proof of policy improvement theorem from the
previous exercise.

Exercise 5. Importance sampling.
Consider the importance sampling estimator:

ŝq =
1

N

N∑
i

f(xi)
p(xi)

q(xi)
, xi ∼ q, (7)

where p(x) and q(x) are known and sp = Ex∼p[f(x)] is the estimated quantity.

(i) Under which conditions is ŝq an unbiased estimator? Identify some of the problems
with the importance sampling estimator and propose solutions.

(ii) BONUS. Let us consider the variance of the importance sample estimator. When
is it maximized? Show that the choice of q(x) minimizing the variance is q∗(x) =
p(x)|f(x)|/Z, where Z is the normalization constant. Because sampling from q∗ is usu-
ally infeasible, an alternative approach is to use weighted or self-normalized importance
sampling estimator:

ŝWIS =

∑N
i wif(xi)∑N

i wi
, wi =

p(xi)

q(xi)
, xi ∼ q. (8)

Show ŝWIS is a biased estimator, however it does converge to sp as N →∞.
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Part II: Coding Exercises

Setup Instructions

Download and unpack the instructions and code from this link: https://bit.ly/2BFWmFf.
Open a terminal and navigate into the directory cdt tutorial which you just unpacked. In
there, try running the following command

python gridworld.py -m

If this works, you’re all set! If not, read below or ask for help.

Python The coding exercises are based on Python 2. If you have Python, you can check
which version you have installed by running

python -V

Also check python2 -V or python3 -V. If you don’t have any python version installed,
we recommend using Anaconda. If you have Python 3 with Anaconda, you can create a
virtual environment (see below).

Installing Anaconda If you don’t have any Python installed, we recommend using Ana-
conda. Follow the instructions here: https://conda.io/en/latest/miniconda.html.

Virtual Environment with Anaconda If you have conda installed, you can also create
a virtual environment like so:

conda update conda

conda create -n rl_tutorial python=2.7 anaconda

source activate rl_tutorial

To end the current session, enter source deactivate. You can remove the virtual envi-
ronment from your machine with conda remove -n rl tutorial -all.

These exercises are based on material from UC Berkeley (see: http://ai.berkeley.

edu).
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Exercise 6. Value Iteration.

In this exercise, you will implement the value iteration algorithm on a simple gridworld
environment. To have a look at the environment and play manually, execute

python gridworld.py -m

You can control many aspects of the simulation. A full list of options is available by
running

python gridworld.py -h

In value iteration, we want to learn the optimal value function. Hence we need a way to
save the values for each state that we encounter. Before starting the exercise, think about
or discuss the following:

What is a good way to implement this? How would you initialise the values?
What if you don’t know upfront what the state space is, how would you go about
implementing this?

You should use the Counter class in util.py to save the state values, which is a dictionary
with a default value of zero.

(i) Algorithm. First, you will edit the file valueIterationAgents.py. Value iteration
is an offline planner, and hence you have access to the state transitions and environ-
ment dynamics. The ValueIterationAgent has a model of the environment via a
MarkovDecisionProcess (see mdp.py) that is used to estimate state values before ever
actually acting.

To implement the value iteration, complete the valueIteration() function in
valueIterationAgents.py. This function should compute the values for all states.

Note that to compute the optimal values, the agent does not interact with the envi-
ronment. Your value iteration agent is an offline planner, not a reinforcement learning
agent, and so the relevant training option is the number of iterations of value iteration
it should run (option -i).

(ii) Action Selection. Now that you have a way to compute the optimal values for each
state, you need an agent that acts optimally given those values. For this, you first need
to complete computeQValueFromValues(state, action): This function returns the
Q-value of the (state, action) pair given by the value function given by self.values.
Using this, implement action selection via computeActionFromValues(state): This
function computes the best action according to the value function given by self.values.

(iii) Evaluation. To run the algorithm, execute:

python gridworld.py -a value -i 100 -k 10
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This will show you the values of the algorithm you implemented for each state. Press
a key to cycle through state values, Q-values, and policies.

Please check with us if the values are correct before continuing.

Exercise 7. Cliffworld MDP.

In this exercise, we look at the Cliff World environment and learn a policy using the value
iteration algorithm you just implemented. We are interested in the effect of different pa-
rameters on the optimal policy. There are two terminal states with positive payoffs +1 and
+10. We distinguish between two types of paths: (1) paths that ”risk the cliff” and travel
near the bottom row of the grid; these paths are shorter but risk earning a large negative
payoff, and are represented by the red arrow in the figure below. (2) paths that ”avoid the
cliff” and travel along the top edge of the grid. These paths are longer but are less likely to
incur huge negative payoffs. To play with the environment manually, execute

python gridworld.py -g DiscountGrid -m

You will see that the agent starts in the bottom left corner, and that there are two termi-
nal states - one with a reward of 1, and one with a reward of 10. The bottom row consists of
a cliff which the agent can fall down, which gives a reward of -10 and terminates the episode.
When testing this, you might notice that sometimes the agent takes random actions instead
of the one you chose. This is just part of life in a grid world!

Before you start the exercise, think about and discuss the following:

What is a good strategy for the agent to maximise its return? How does the
reward in non-terminal states influence the optimal policy? What effect do dif-
ferent discount factors have on the optimal policy? How does the randomness of
the environment change the optimal behaviour?

(i) Varying MDP parameters. Here are the optimal policy types you should attempt
to produce:

(a) Prefer the close exit (+1), risking the cliff (-10)

(b) Prefer the close exit (+1), but avoiding the cliff (-10)
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(c) Prefer the distant exit (+10), risking the cliff (-10)

(d) Prefer the distant exit (+10), avoiding the cliff (-10)

(e) Avoid both exits and the cliff (so an episode should never terminate)

To do so, you can vary the following settings:

• The discount factor, using -d

• The reward given to the agent at each time step, using -r

• The probability of selecting a random action, using -n

Your setting of the parameter values for each part should have the property that, if
your agent followed its optimal policy without being subject to any noise, it would
exhibit the given behavior.

To test different settings, use

python gridworld.py -g DiscountGrid -a value -i 100 -d 0.9 -r 0.0 -n 0.2

Please put your answers for each setting into the file analysis.py, using the func-
tions question3a() through question3e(). These should each return a 3-item tuple of
(discount, noise, living reward), unless if a particular behavior is not achieved for any
setting of the parameters. In this case return the string ‘NOT POSSIBLE’.

Exercise 8. Pacman MDP.

Time to learn Pacman! In this exercise, you will implement tabular Q-Learning for
Pacman. To have a look at the environment and play manually, execute

python pacman.py

For the purpose of this exercise we will use a tiny version of Pacman, which you can test
using

python pacman.py --layout smallGrid

If the above works you can start the exercise below, otherwise have a look at the setup
instructions (setup instructions.md) or let us know and we will help you set up.

Before starting the exercise, think about / discuss the following:
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Since we are implementing tabular Q-Learning, you need a way to save the Q-
Values for all state-action pairs. What do you think is a good way to implement
this? What do you do with actions that are invalid given a state?

You will edit the class QLearningAgent in the file qlearningAgents.py.

(i) Tabular Q-Values and Action Selection. You are not given the action and state
space upfront. Instead, you have to extend the Q-Table on the fly and initialise the
values for new state-action pairs once you see them. For this, you should again use
the class Counter in util.py. Have a look at what it is doing, and use it in the
init function of your Q-Learning agent. Once you have initialised yout Q-Table,

implement the following functions: - getQValue, which returns a Q-value for a given
state and action - computeValueFromQValues, which returns the maximum Q-value of
all legal actions in the given state - computeActionFromQValues, which computes the
best action to take in a state - getAction, which selects an action given the current
state using epsilon-greedy action selection.

(ii) Update Function. Once you have the above functionality, we have to update the
Q-values in order to learn how to select the best action. For this, you need to adapt
the function update and implement the Q-learning update function.

(iii) Evaluation. Once you are done, you should be able to execute:

python pacman.py -p PacmanQAgent -x 2000 -n 2010 -l smallGrid

and let your agent learn! (This will train for 2000 games and evaluate for 10.) Once
Pacman is done training, he should win very reliably in test games (at least 90% of the
time). Flags you can use: - -n 2010 Number of games to play (when to switch between
training and testing is determined by numTraining) - -x 2000 How many episodes are
training (suppressed output) - -a numTraining=2000 Use this option instead of the
above, if you want to watch training - -a epsilon=0.05, alpha=0.2, gamma=0.8 Set
different learning parameters

If you want to watch 10 training games to see what’s going on, use the command

python pacman.py -p PacmanQAgent -n 10 -l smallGrid -a numTraining=10

(iv) Scaling Things Up. Now, what happens if you run the same code on larger grids
(options: mediumGrid, smallClassic, mediumClassic), like

python pacman.py -p PacmanQAgent -x 2000 -n 2010 -l mediumGrid

Why does this fail? What are strategies to scale your algorithm to larger grids?
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