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Course Outline
Lecture 1: Tabular Methods

I MDPs & value functions
I Tabular planning and model-free RL

Lecture 2: Function Approximation & Deep RL
I Semi-gradient evaluation & control
I Linear function approximation & LSTD
I Deep RL

Lecture 3: Policy Gradients & Model-Based RL
I Policy gradients, actor-critic, natural gradients
I Tabular & deep model-based methods
I Smart exploration with models

Lecture 4: POMDPs, Multi-Agent RL, Safety
I Partial observability, belief MDPs, POMDP planning
I Deep RL for POMDPs
I Cooperative multi-agent RL
I Factored value functions & multi-agent actor-critic
I AI Safety
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Logistics

Monday through Thursday

Lectures 9:30 to 12:00, possibly 12:30

15 minute break at 10:45 (remind me if I forget)

Practicals 14:00 to 17:00

Run by my postdocs/DPhil students (different pair each day)
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Course Material

Assumes basic background in ML/bandits, none in RL

Most of Lecture 1, parts of Lectures 2 & 3 based on Sutton & Barto

Some material from the second edition

Notation from the first edition

Slides available in Teams
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Reinforcement learning

How can an intelligent agent learn from experience how to make decisions
that maximise its utility in the face of uncertainty?
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Artificial intelligence
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Reinforcement learning

In reinforcement learning an agent tries to solve a control problem by
directly interacting with an unfamiliar environment

The agent must learn by trial and error, trying out actions to learn
about their consequences

Applicable to robot control, game playing, system optimisation, ad
serving, and information retrieval

Part of machine learning, inspired by behavioural psychology, related
to operations research, control theory, classical planning, and aspects
of neuroscience
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Reinforcement learning vs. supervised learning

No examples of correct or incorrect behaviour; instead only rewards
for actions tried

The agent is active in the learning process: it has partial control over
what data it will obtain for learning

The agent must learn on-line: it must maximise performance during
learning, not afterwards
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Sutton’s reward hypothesis

“All of what we mean by goals and purposes

can be well thought of as maximization of the

expected value of the cumulative sum of a re-

ceived scalar signal (reward).”

Source: http://rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html
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Reward design problem

Source: David Ha, https://goo.gl/W61QgR
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K -armed bandit problem

Sit before a slot machine
(bandit) with many arms

Each arm has an unknown
stochastic payoff

Goal is to maximise cumulative
payoff over some period

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 9, 2020 11 / 62



Contextual bandit problem

Also called associative search

At each play, agent receives a state signal, also called an observation
or side-information

Expected payoffs depend on that observation

Suppose there are many bandits, each a different color; after each
play, you are randomly transported to another bandit

In principle, can be treated as multiple simultaneous bandit problems
and estimate Q(s, a) = E[R|s, a]
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Ad placement

Web page = state

Actions = ads

Environment = user

Reward = pay per click
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The full reinforcement learning problem
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The credit-assignment problem

Suppose an agent takes a long sequence of actions, at the end of which it
receives a large positive reward?

How can it determine to what degree each action in that sequence
deserves credit for the resulting reward?
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Richard Bellman

Father of decision-theoretic planning

Formalized Markov decision processes,
derived Bellman equation, invented
dynamic programming

“A towering figure among the
contributors to modern control theory
and systems analysis” -IEEE

“The Bellman equation is one of the
five most important ideas in artificial
intelligence” -Bram Bakker
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Markov decision processes

The Markov decision process (MDP) is the classic formal model of a
sequential decision problem

Assume a fully-observable, stationary, and possibly stochastic
environment

A finite MDP consists of:
I Discrete time t = 0, 1, 2, . . .
I A discrete set of states s ∈ S
I A discrete set of actions a ∈ A(s) for each s
I A transition function Pa

ss′ = p(s ′|s, a): probability of transitioning to
state s ′ when taking action a at state s

I A reward function Ra
ss′ = E[r |s, a, s ′]: expected reward when taking

action a at state s and transitioning to s ′

I A planning horizon H or discount factor γ
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MDP example: recycling robot
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The Markov property

For all st , at , st+1, rt+1:

p(st+1, rt+1|st , at) = p(st+1, rt+1|st , at , rt , st−1, at−1, . . . , r1, s0, a0)

The current state is a sufficient statistic for the agent’s history

Conditioning actions on that history cannot possibly help

Can restrict search to reactive policies:

I Stochastic reactive policy: π(s, a) = p(a|s)

I Deterministic reactive policy: π(s) = a

I In every MDP there exists at least one optimal
deterministic reactive policy
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Is it Markov? (1)

A robot in a maze

State: wall/no wall on all 4 sides

Actions: move up, down, left,
right, unless a wall is in the way
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Is it Markov? (2)

A game of chess

State: board position

Actions: legal moves

Opponent has a fixed reactive
policy

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 9, 2020 21 / 62



Return

The goal of the agent is to maximize the expected return, a sum over
the rewards received.

In an infinite-horizon task, the return is defined as:

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞∑
k=0

γk rt+k+1

In a finite-horizon task, this becomes a finite summation

In an infinite-horizon task that is episodic instead of continuing, we
represent episode termination as transition to an absorbing state with
self-transitions and zero reward.
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Value functions

Value functions are the primary tool for reasoning about future reward

The state-value function of a policy π is:

V π(s) = Eπ

[
Rt |st = s

]
= Eπ

[ ∞∑
k=0

γk rt+k+1|st = s
]

The action-value of a policy π is:

Qπ(s, a) = Eπ

[
Rt |st = s, at = a

]
= Eπ

[ ∞∑
k=0

γk rt+k+1|st = s, at = a
]
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Bellman equation

The definition of V π can be rewritten recursively by making use of
the transition model, yielding the Bellman equation:

V π(s) =
∑
a

π(s, a)
∑
s′

Pa
ss′

[
Ra
ss′ + γV π(s ′)

]
This is a set of linear equations, one for each state, the solution of
which defines the value of π

A similar recursive definition holds for Q-values:

Qπ(s, a) =
∑
s′

Pa
ss′

[
Ra
ss′ + γ

∑
a′

π(s ′, a′)Qπ(s ′, a′)
]
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Backup diagrams

V π(s) =
∑
a

π(s, a)
∑
s′

Pa
ss′

[
Ra
ss′ + γV π(s ′)

]
Qπ(s, a) =

∑
s′

Pa
ss′

[
Ra
ss′ + γ

∑
a′

π(s ′, a′)Qπ(s ′, a′)
]
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Optimal value functions

Value functions define a partial ordering over policies:

π � π′ ⇒ V π(s) ≥ V π′
(s), ∀s ∈ S

There can be multiple optimal policies but they all share the same
optimal state-value function:

V ∗(s) = max
π

V π(s),∀s ∈ S

They also share the same optimal action-value function:

Q∗(s, a) = max
π

Qπ(s, a),∀s ∈ S , a ∈ A
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Bellman optimality equations

Bellman optimality equations express this recursively:

V ∗ = max
a∈A

∑
s′

Pa
ss′

[
Ra
ss′ + γV ∗(s ′)

]

Q∗(s, a) =
∑
s′

Pa
ss′

[
Ra
ss′ + γmax

a′∈A
Q∗(s ′, a′)

]
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Why optimal value functions are useful

An optimal policy is greedy with respect to V ∗ or Q∗:

π∗(s) ∈ arg max
a

Q∗(s, a) = arg max
a

[
Ra
ss′ + γ

∑
s′

Pa
ss′V

∗(s ′)
]
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MDP planning

MDPs give us a formal model of sequential decision making

Given the optimal value function, computing an optimal policy is
straightforward

How can we find V ∗ or Q∗?

Algorithms for MDP planning compute the optimal value function
given a complete model of the MDP

Given a model, V ∗ is usually sufficient
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Dynamic programming approach
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Policy evaluation (1)

Rather than estimating value of each state independently, use
Bellman equation to exploit the relationship between states

Initial value function V0 is chosen arbitrarily

Policy evaluation update rule:

Vk+1(s)←
∑
a

π(s, a)
∑
s′

Pa
ss′

[
Ra
ss′ + γVk(s ′)

]
Apply to every state in each sweep of the state space

Repeat over many sweeps

Converges to the fixed point Vk = V π
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Policy evaluation (2)
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Policy improvement (1)

Policy evaluation yields V π, the true value of π

Use this to incrementally improve the policy by considering whether
for some state s there is a better action a 6= π(s)

Is choosing a in s and then using π better than using π, i.e.,

Qπ(s, a) =
∑
s′

Pa
ss′

[
Ra
ss′ + γV π(s ′)

]
≥ V π(s)?

If so, then the policy improvement theorem tells us that changing π
to take a in s will increase its value:

∀s ∈ S ,Qπ(s, π′(s)) ≥ V π(s)⇒ ∀s ∈ S ,V π′
(s) ≥ V π(s)

In our case, π = π′ except that π′(s) = a 6= π(s)
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Policy improvement (2)

Applying this principle at all states yields the greedy policy with
respect to V π:

π′(s)← arg max
a

Qπ(s, a) = arg max
a

∑
s′

Pa
ss′

[
Ra
ss′ + γV π(s ′)

]
If π = π′, then V π = V π′

and for all s ∈ S :

V π′
= max

a∈A

∑
s′

Pa
ss′

[
Ra
ss′ + γV π′

(s ′)
]

This is equivalent to the Bellman optimality equation, implying that
V π = V π′

= V ∗ and π = π′ = π∗
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Policy iteration (1)

Policy improvement makes result of policy evaluation obsolete

Return to policy evaluation to compute V π′

Converges to the fixed point V π = V ∗
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Policy iteration (2)
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“Counterexample” (1)

Two actions (left and right) and two timesteps

LL yields return of 5

LR yields return of 0

RL yields return of 0

RR yields return of 10

Policy of LL is a local maximum?

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 9, 2020 37 / 62



“Counterexample” (2)

s1

s2 s3

L

LL R R

R

r(s2, L) = 5 r(s3, L) = 10

π(s1) = π(s2) = π(s3) = L

Qπ(s1, L) = 5, Qπ(s1, R) = 0
Qπ(s2, L) = 5, Qπ(s2, R) = 0
Qπ(s3, L) = 0, Qπ(s3, R) = 10
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Value iteration

We do not have to wait for policy evaluation to complete before doing
policy improvement

In extreme case, two steps are integrated in one update rule:

Vk+1(s)← max
a

∑
s′

Pa
ss′

[
Ra
ss′ + γVk(s ′)

]
Turns Bellman optimality equation into an update rule

This can also be written:

Qk+1(s, a)←
∑
s′

Pa
ss′

[
Ra
ss′ + γVk(s ′)

]
,

Vk+1(s)← max
a

Qk+1(s, a)

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 9, 2020 39 / 62



Monte-Carlo methods

Monte-Carlo (MC) methods are statistical techniques for estimating
properties of complex systems via random sampling

MC provides one way to perform reinforcement learning: finding
optimal policies without a priori models of MDP

MC for RL learns from complete sample returns in episodic tasks:
uses value functions but not Bellman equations
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Monte-Carlo policy evaluation

Learn V π without a model of the MDP

Use π for many episodes

For each state s, average observed returns after visiting s

Every-visit MC: average returns for all visits to s in an episode

First-visit MC: average returns only for first visit to s in an episode

Both converge asymptotically
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Monte-Carlo backup diagram

Unlike dynamic programming, only one
choice at each state

Unlike dynamic programming, entire episode
included: MC does not bootstrap

Computational and sample costs to estimate
V π(s) for one s are independent of |S |
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Monte-Carlo estimation of Q-values

MC methods most useful when no model is available

π∗ cannot be derived from V ∗ without a model so learn Q∗

Can learn Qπ by averaging returns obtained when following π after
taking action a in state s

Converges asymptotically if every (s, a) visited infinitely often

Requires explicit exploration of actions not favored by π
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Monte-Carlo control

Policy evaluation step: use MC methods

Policy improvement step: π(s)← arg maxa Q(s, a)
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On-policy Monte-Carlo control

Use ε-greedy soft policies:
I Non-greedy actions: ε

|A(s)|
I Greedy action: 1− ε+ ε

|A(s)|

Replace greedification with soft greedifaction

Policy improvement theorem guarantees any ε-greedy policy wrt to
Qπ is an improvement over any ε-soft policy π

Converges to the best ε-soft policy
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Off-policy Monte-Carlo control (1)

Evaluate an estimation policy using samples gathered from a
behaviour policy if behaviour policy is sufficiently exploratory

Useful if behaviour policy cannot be changed

Also allows estimating a deterministic policy while still exploring with
behaviour policy

Use importance sampling to weight returns from behaviour policy by
their probabilities under estimation policy
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Importance sampling

Interested in Ed [f (x)] where d is a target distribution over x

Samples f (x1), f (x2), . . . , f (xn) from source distribution d ′

Distributions d and d ′ are known but f is unknown

Importance sampling is based on the following observation:

Ed [f (x)] =
∑
x

f (x)d(x) =
∑
x

f (x)
d(x)

d ′(x)
d ′(x) = Ed ′ [f (x)

d(x)

d ′(x)
]

This leads to the importance sampling estimator:

Ed [f (x)] ≈ 1

n

n∑
i=1

f (xi )
d(x)

d ′(x)

In our case: target distribution comes from estimation policy; source
distribution from behaviour policy
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Off-policy Monte-Carlo control (2)

Given ns returns Ri (s) from state s with probability pi (s) and p′i (s) of
being generated by π and π′:

V π(s) ≈

∑ns
i=1

pi (s)
p′i (s)

Ri (s)∑ns
i=1

pi (s)
p′i (s)

pi (s) and p′i (s) are unknown but:

pi (s)

p′i (s)
=

∏Ti (s)−1
k=t π(sk , ak)Pak

sk sk+1∏Ti (s)−1
k=t π′(sk , ak)Pak

sk sk+1

=

Ti (s)−1∏
k=t

π(sk , ak)

π′(sk , ak)
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Temporal-difference methods

DP exploits Bellman equation but requires model

MC doesn’t require model but doesn’t exploit Bellman equation

TD methods can get the best of both worlds: exploit Bellman
equation without requiring a model

Core algorithms of model-free RL
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TD(0)

Constant-α-MC is a simple every-visit MC for nonstationary
environments:

V (st)← V (st) + α[Rt − V (st)]

TD(0) just uses a different update target:

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)]

TD(0) is a bootstrapping method because it bases updates on
existing estimates, like DP
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TD(0)
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TD(0) backup diagram

Sampling: unlike DP but like MC, only one
choice at each state

Bootstrapping: like DP but unlike MC, use
estimate from next state
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Advantages of TD prediction methods

TD methods require only experience, not a model

TD, but not MC, methods can be fully incremental

Learn before final outcome: less memory and peak computation

Learn without the final outcome: from incomplete sequences

Both MC and TD converge but TD tends to be faster
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Sarsa: on-policy TD estimation of Q-values

To learn π∗ with TD, we need to learn Q∗ instead of V ∗

Sarsa updates Q by bootstrapping off next (s, a):

Q(st , at)← Q(st , at) + α[rt+1 + γQ(st+1, at+1)− Q(st , at)]
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Sarsa: on-policy TD control
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Expected sarsa

Take expectation wrt actions:

Q(st , at)← Q(st , at) +α[rt+1 +γ
∑
a

π(st+1, a)Q(st+1, a)−Q(st , at)]

Action probabilities known from policy but more computation needed

Reduces variance in updates
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Q-learning: off-policy TD control

Make TD off-policy: bootstrap with best action, not actual action:

Q(st , at)← Q(st , at) + α[rt+1 + γmax
a

Q(st+1, a)− Q(st , at)]
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Q-learning backup diagram

What is Sarsa’s backup diagram?
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Example: cliff walking
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n-step updates
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Eligibility traces: TD(λ)
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Unified view
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