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Where are we so far? (1)

MDP planning methods that exploit the Bellman equation

Complexity of value iteration:

I Per iteration: quadratic in |S | and linear in |A|
I Number of iterations: polynomial in |S | and 1

1−γ

Efficient considering there are |A||S | deterministic policies

But states are usually described using state features

x(s) = (x1(s), x2(s), . . . , xd(s))>

Curse of dimensionality: |S | is exponential in d

Missing ingredient is generalisation
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Where are we so far? (2)

Model-free RL methods like Q-learning and Sarsa exploit the Bellman
equation without needing a model

Guaranteed to converge to the optimal policy in the limit if:
1 S and A are finite
2
∑

t α
sa
t =∞ and

∑
t(α

sa
t )2 <∞ x

3 Var{Rss′

a } <∞
4 γ < 1

Massively data inefficient

Missing ingredients:

I Generalisation

I Data reuse

I Smart exploration
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Approximate value functions

Value function parameterised by w ∈ Rd where d � |S |:

V̂ (s,w) ≈ V π(s)

Formulate objective wrt MSE:

min
w

∑
s∈S

µ(s)[V π(s)− V̂ (s,w)]2,

where µ is the on-policy distribution

Reduces policy evaluation to an (active, incremental, nonstationary)
supervised learning problem
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Update rule

Update using SGD:

wt+1 = wt −
α

2
∇
[
V π(st)− V̂ (st ,wt)

]2
= wt + α

[
V π(st)− V̂ (st ,wt)

]
∇V̂ (st ,wt)

Since V π(st) is unknown, use Monte Carlo:

wt+1 = wt + α
[
Rt − V̂ (st ,wt)

]
∇V̂ (st ,wt)

Any unbiased target like Rt ensures convergence to a local optimum
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Semi-gradient TD(0)

Bootstrapping target:

wt+1 = wt + α
[
rt+1 + γV̂ (st+1,wt)− V̂ (st ,wt)

]
∇V̂ (st ,wt)

Semi-gradient: treats the wt in the target as a constant

Converges in linear case

There are true gradient methods, e.g., residual gradients [Baird 1995]:

wt+1 = wt+α
[
rt+1+γV̂ (st+1,wt)−V̂ (st ,wt)

]
(∇V̂ (st ,wt)−γ∇V̂ (st+1,wt))

or gradient TD [Sutton et al. 2009] but these are slow in practice and
suffer from the double sampling problem
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Double Sampling Problem

X = Bernoulli(12)

y = (E[X ])2 = 1
2 ×

1
2 = 1

4

Single-sample estimator:

I ŷ1 = 1
N

∑N
i=1 x

2
i , xi ∼ X

I E[ŷ1] = 1×1
2 + 0×0

2 = 1
2

Double-sample estimator:

I ŷ2 = 1
N

∑N
i=1(x2i−1x2i ), xi ∼ X

I E[ŷ2] = 1×1
4 + 1×0

4 + 0×1
4 + 0×0

4 = 1
4
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Linear function approximation (1)

Let x(s) = (x1(s), x2(s), . . . , xd(s))> be a feature vector such that

V̂ (s,w) = w>x(s) =
d∑

i=1

wixi (s)

The gradient becomes ∇V̂ (s,w) = x(s) and TD(0) is:

wt+1 = wt + α
[
rt+1 + γV̂ (st+1,wt)− V̂ (st ,wt)

]
x(st)

Convergence to local optimum =⇒ convergence to global optimum
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Linear function approximation (2)

But linear semi-gradient TD(0) converges to TD fixed point instead

The update rule can be rearranged, where xt = x(st):

wt+1 = wt + α
(
rt+1 + γw>t xt+1 −w>t xt

)
xt

= wt + α
(
rt+1xt − xt(xt − γxt+1)>wt

)
The expected next weight vector is then:

E[wt+1|wt ] = wt + α(b− Awt),

where:
A = E

[
xt(xt − γxt+1)>

]
and b = E[rt+1xt ]
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Linear function approximation (3)

Convergence implies:

b− AwTD = 0

b = AwTD

wTD = A−1b,

Relationship to minimum:

MSE(wTD) ≤ 1

1− γ
min

w
MSE(w)
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Least squares temporal differences

Estimate A and b directly, not iteratively:

ŵt = Â−1t b̂t ,

where:

Â =
t−1∑
k=0

xk(xk − γxk+1)> + εI and b̂ =
t−1∑
k=0

rk+1xk

Cost to compute Â and b̂ depends on t unless updated incrementally:

Ât = Ât−1 + xt(xt − γxt+1)> and b̂t = b̂t−1 + rt+1xt

Matrix inversion is generally O(d3) but Ât is a sum of outer products
and can be inverted in O(d2) using the Sherman-Morrison formula
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Nonlinear function approximation
Neural networks represent the value function

d inputs: x1(s), x2(s), . . . , xd(s)

Single output estimates V (s)

Early success: TD-Gammon [Tesauro, 1992, 1995, 1996, 2002]

Uses partial model and evaluates afterstates
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On-policy semi-gradient control

Now w parameterises Q instead of V :

Q̂(s, a,w) ≈ Qπ(s, a)

Semi-gradient Sarsa:

wt+1 = wt+α
[
rt+1+γQ̂(st+1, at+1,wt)−Q̂(st , at ,wt)

]
∇Q̂(st , at ,wt)

Continuous states are fine

Continuous actions make policy improvement hard
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Nonlinear control

Neural networks represent the value function

d inputs: x1(s), x2(s), . . . , xd(s)

|A| outputs: Q(s, a1),Q(s, a2), . . . ,Q(s, a|A|)

Allows action selection with one forward pass
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Off-policy function approximation

Naive off-policy semi-gradient TD(0):

wt+1 = wt +α
π(st , at)

π′(st , at)

[
rt+1 + γV̂ (st+1,wt)− V̂ (st ,wt)

]
∇V̂ (st ,wt)

Semi-gradient Q:

wt+1 = wt+α
[
rt+1+γmax

a
Q̂(st+1, a,wt)−Q̂(st , at ,wt)

]
∇Q̂(st , at ,wt)

Both known to be vulnerable to divergence
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Baird’s counterexample [1995]
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Tsitsiklis & Van Roy counterexample [1997]

V (s) = wφ(s), where φ(si ) = i

∀i ,R(si ) = 0 =⇒ w∗ = 0

Only update s1:

I ∆w ∝ γ2w − w

I γ > 0.5 =⇒ divergence

Even uniform updates of s1 and s2 =⇒ divergence for large γ
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Mountain car

Boyan & Moore [1995] showed Q-learning’s failure with nonlinear FA

Sutton [1996] succeeded with Sarsa with linear tile coding
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Tile coding
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Deadly triad [Sutton & Barto 2018]

1 Function approximation

2 Bootstrapping

3 Off-policy learning

Are all three essential?

Not in the triad:

1 Control

2 Learning

3 Nonlinearity
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Experience replay [Lin 1992]

All methods discussed so far (except LSTD) are sample inefficient

Binning the data after one use is madness

Experience replay stores samples dt = (st , at , rt+1, st+1)

Repeatedly replays them to the agent

More computation but fewer samples
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(Neural) fitted Q-iteration [Riedmiller 2005] [Ernst et al. 2005]

Store all samples as in experience replay

Initialise w

For i = 0, 1, . . .

I For each dt , construct target y i
t = rt+1 + γmaxa Q̂(st , at ,w)

I For j = 0, 1, . . .

F Sample a datapoint dt

F w← w + α
[
y i
t − Q̂(st , at ,w)

]
∇Q̂(st , at ,w)

Targets remain fixed during inner loop

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 22 / 34



Atari learning environment
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Deep reinforcement learning
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DQN [Mnih et al. 2015]
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DQN [Mnih et al. 2015]

DQN update rule:

wt+1 = wt+α
[
rt+1+γmax

a
Q̂(st+1, a,w

−)−Q̂(st , at ,wt)
]
∇Q̂(st , at ,wt)

where w− are the weights of a frozen target network

Every k updates: w− ← wt

Yields a cheap approximation to NFQ

Gradients estimated from mini-batches

Mini-batches randomly sampled via experience replay
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DQN results
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Rainbow [Hessel et al. 2017]

Double Q-learning [van Hasselt et al. 2015]

Prioritised replay [Schaul et al. 2015]

Duelling networks [Wang et al. 2016]

Multi-step targets [Sutton 1988]

Distributional RL [Bellemare et al. 2017]

Noisy nets [Fortunato et al. 2017]
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Double DQN [van Hasselt et al. 2015]

Q-learning takes max of noisy Q estimate: yields bias

Instead separate estimation from maximisation

Note that:

max
a

Q̂(st+1, a,wt) = Q̂(st+1, arg max
a

Q̂(st+1, a,wt),wt)

Double Q-learning uses two independent sets of weights:

Q̂(st+1, arg max
a

Q̂(st+1, a,wt),w
′
t)

Double DQN uses target network, yielding update target:

rt+1 + γQ̂(st+1, arg max
a

Q̂(st+1, a,wt),w
−)

Why not swap wt and w−?
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Prioritised replay [Hessel et al. 2017]

Prioritised sweeping [Moore & Atkeson 1993]

I Model-based RL

I Efficient planning upon model updates

I Starting from updated state, put tree of predecessors in priority queue

I Priority is magnitude of update, i.e., TD error

Prioritised replay [Schaul et al. 2015] extends to model-free RL

I Sample transitions from replay buffer with probability based on last
encountered absolute TD error:

pt ∝
∣∣∣rt+1 + γmax

a
Q̂(st+1, a,w

−)− Q̂(st , at ,wt)
∣∣∣ω

I New transitions have maximal priority

I Can inappropriately favour stochastic transitions
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Duelling networks [Wang et al. 2016]
Advantage function compares given action to expected action:

A(s, a) = Q(s, a)− V (s)

Could represent Q(s, a) as sum of two parts:

Q̂(s, a) = V̂ (s) + Â(s, a)

To improve identifiability force advantage of a∗ to be zero:

Q̂(s, a) = V̂ (s) + Â(s, a)−maxa′Â(s, a′)

More stable to use average instead of max:

Q̂(s, a) = V̂ (s) + Â(s, a)− 1

|A|
∑
a′

Â(s, a′)
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Multi-step targets [Sutton 1988]

The n-step return is:

Rn
t =

n−1∑
k=0

γk rt+k+1

Multi-step DQN target:

Rn
t + γn max

a
Q̂(st+n, a,w

−)

Is this on-policy or off-policy?
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Distributional RL [Bellemare et al. 2017]

Distributional RL learns the distribution of returns instead of the
expected returns

Represent distribution with probability masses placed at discrete
support points

Return distribution satisfies as variant of the Bellman equation

TD error becomes a KL divergence

Models aleatoric, not epistemic, uncertainty

Why does it work? [Imani & White 2018]
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Noisy nets [Fortunato et al. 2017]

Replace linear layer b + Wx with:

b + Wx + bnoisy � εb + (Wnoisy � εw )x

where εb and εw are random variables, e.g., Gaussian and � denotes
element-wise product

Over time network can learn to ignore noisy stream

Rate differs across search space

Automatic state-conditional annealing of exploration
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