
Introduction to Reinforcement Learning

Lecture 2: Function Approximation & Deep RL

Shimon Whiteson
Dept. of Computer Science

University of Oxford

(based on material from
Rich Sutton & Andrew Barto)

November 10, 2020

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 1 / 34

Where are we so far? (1)

MDP planning methods that exploit the Bellman equation

Complexity of value iteration:

I Per iteration: quadratic in |S | and linear in |A|
I Number of iterations: polynomial in |S | and 1

1−γ

Efficient considering there are |A||S | deterministic policies

But states are usually described using state features

x(s) = (x1(s), x2(s), . . . , xd(s))>

Curse of dimensionality: |S | is exponential in d

Missing ingredient is generalisation

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 2 / 34

Where are we so far? (2)

Model-free RL methods like Q-learning and Sarsa exploit the Bellman
equation without needing a model

Guaranteed to converge to the optimal policy in the limit if:
1 S and A are finite
2
∑

t α
sa
t =∞ and

∑
t(α

sa
t)2 <∞ x

3 Var{Rss′

a } <∞
4 γ < 1

Massively data inefficient

Missing ingredients:

I Generalisation

I Data reuse

I Smart exploration

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 3 / 34

Approximate value functions

Value function parameterised by w ∈ Rd where d � |S |:

V̂ (s,w) ≈ V π(s)

Formulate objective wrt MSE:

min
w

∑
s∈S

µ(s)[V π(s)− V̂ (s,w)]2,

where µ is the on-policy distribution

Reduces policy evaluation to an (active, incremental, nonstationary)
supervised learning problem

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 4 / 34

Update rule

Update using SGD:

wt+1 = wt −
α

2
∇
[
V π(st)− V̂ (st ,wt)

]2
= wt + α

[
V π(st)− V̂ (st ,wt)

]
∇V̂ (st ,wt)

Since V π(st) is unknown, use Monte Carlo:

wt+1 = wt + α
[
Rt − V̂ (st ,wt)

]
∇V̂ (st ,wt)

Any unbiased target like Rt ensures convergence to a local optimum

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 5 / 34

Semi-gradient TD(0)

Bootstrapping target:

wt+1 = wt + α
[
rt+1 + γV̂ (st+1,wt)− V̂ (st ,wt)

]
∇V̂ (st ,wt)

Semi-gradient: treats the wt in the target as a constant

Converges in linear case

There are true gradient methods, e.g., residual gradients [Baird 1995]:

wt+1 = wt+α
[
rt+1+γV̂ (st+1,wt)−V̂ (st ,wt)

]
(∇V̂ (st ,wt)−γ∇V̂ (st+1,wt))

or gradient TD [Sutton et al. 2009] but these are slow in practice and
suffer from the double sampling problem

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 6 / 34

Double Sampling Problem

X = Bernoulli(12)

y = (E[X])2 = 1
2 ×

1
2 = 1

4

Single-sample estimator:

I ŷ1 = 1
N

∑N
i=1 x

2
i , xi ∼ X

I E[ŷ1] = 1×1
2 + 0×0

2 = 1
2

Double-sample estimator:

I ŷ2 = 1
N

∑N
i=1(x2i−1x2i), xi ∼ X

I E[ŷ2] = 1×1
4 + 1×0

4 + 0×1
4 + 0×0

4 = 1
4

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 7 / 34

Linear function approximation (1)

Let x(s) = (x1(s), x2(s), . . . , xd(s))> be a feature vector such that

V̂ (s,w) = w>x(s) =
d∑

i=1

wixi (s)

The gradient becomes ∇V̂ (s,w) = x(s) and TD(0) is:

wt+1 = wt + α
[
rt+1 + γV̂ (st+1,wt)− V̂ (st ,wt)

]
x(st)

Convergence to local optimum =⇒ convergence to global optimum

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 8 / 34

Linear function approximation (2)

But linear semi-gradient TD(0) converges to TD fixed point instead

The update rule can be rearranged, where xt = x(st):

wt+1 = wt + α
(
rt+1 + γw>t xt+1 −w>t xt

)
xt

= wt + α
(
rt+1xt − xt(xt − γxt+1)>wt

)
The expected next weight vector is then:

E[wt+1|wt] = wt + α(b− Awt),

where:
A = E

[
xt(xt − γxt+1)>

]
and b = E[rt+1xt]

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 9 / 34

Linear function approximation (3)

Convergence implies:

b− AwTD = 0

b = AwTD

wTD = A−1b,

Relationship to minimum:

MSE(wTD) ≤ 1

1− γ
min

w
MSE(w)

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 10 / 34

Least squares temporal differences

Estimate A and b directly, not iteratively:

ŵt = Â−1t b̂t ,

where:

Â =
t−1∑
k=0

xk(xk − γxk+1)> + εI and b̂ =
t−1∑
k=0

rk+1xk

Cost to compute Â and b̂ depends on t unless updated incrementally:

Ât = Ât−1 + xt(xt − γxt+1)> and b̂t = b̂t−1 + rt+1xt

Matrix inversion is generally O(d3) but Ât is a sum of outer products
and can be inverted in O(d2) using the Sherman-Morrison formula

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 11 / 34

Nonlinear function approximation
Neural networks represent the value function

d inputs: x1(s), x2(s), . . . , xd(s)

Single output estimates V (s)

Early success: TD-Gammon [Tesauro, 1992, 1995, 1996, 2002]

Uses partial model and evaluates afterstates

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 12 / 34

On-policy semi-gradient control

Now w parameterises Q instead of V :

Q̂(s, a,w) ≈ Qπ(s, a)

Semi-gradient Sarsa:

wt+1 = wt+α
[
rt+1+γQ̂(st+1, at+1,wt)−Q̂(st , at ,wt)

]
∇Q̂(st , at ,wt)

Continuous states are fine

Continuous actions make policy improvement hard

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 13 / 34

Nonlinear control

Neural networks represent the value function

d inputs: x1(s), x2(s), . . . , xd(s)

|A| outputs: Q(s, a1),Q(s, a2), . . . ,Q(s, a|A|)

Allows action selection with one forward pass

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 14 / 34

Off-policy function approximation

Naive off-policy semi-gradient TD(0):

wt+1 = wt +α
π(st , at)

π′(st , at)

[
rt+1 + γV̂ (st+1,wt)− V̂ (st ,wt)

]
∇V̂ (st ,wt)

Semi-gradient Q:

wt+1 = wt+α
[
rt+1+γmax

a
Q̂(st+1, a,wt)−Q̂(st , at ,wt)

]
∇Q̂(st , at ,wt)

Both known to be vulnerable to divergence

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 15 / 34

Baird’s counterexample [1995]

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 16 / 34

Tsitsiklis & Van Roy counterexample [1997]

V (s) = wφ(s), where φ(si) = i

∀i ,R(si) = 0 =⇒ w∗ = 0

Only update s1:

I ∆w ∝ γ2w − w

I γ > 0.5 =⇒ divergence

Even uniform updates of s1 and s2 =⇒ divergence for large γ

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 17 / 34

Mountain car

Boyan & Moore [1995] showed Q-learning’s failure with nonlinear FA

Sutton [1996] succeeded with Sarsa with linear tile coding

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 18 / 34

Tile coding

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 19 / 34

Deadly triad [Sutton & Barto 2018]

1 Function approximation

2 Bootstrapping

3 Off-policy learning

Are all three essential?

Not in the triad:

1 Control

2 Learning

3 Nonlinearity

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 20 / 34

Deadly triad [Sutton & Barto 2018]

1 Function approximation

2 Bootstrapping

3 Off-policy learning

Are all three essential?

Not in the triad:

1 Control

2 Learning

3 Nonlinearity

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 20 / 34

Experience replay [Lin 1992]

All methods discussed so far (except LSTD) are sample inefficient

Binning the data after one use is madness

Experience replay stores samples dt = (st , at , rt+1, st+1)

Repeatedly replays them to the agent

More computation but fewer samples

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 21 / 34

(Neural) fitted Q-iteration [Riedmiller 2005] [Ernst et al. 2005]

Store all samples as in experience replay

Initialise w

For i = 0, 1, . . .

I For each dt , construct target y i
t = rt+1 + γmaxa Q̂(st , at ,w)

I For j = 0, 1, . . .

F Sample a datapoint dt

F w← w + α
[
y i
t − Q̂(st , at ,w)

]
∇Q̂(st , at ,w)

Targets remain fixed during inner loop

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 22 / 34

Atari learning environment

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 23 / 34

Deep reinforcement learning

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 24 / 34

DQN [Mnih et al. 2015]

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 25 / 34

DQN [Mnih et al. 2015]

DQN update rule:

wt+1 = wt+α
[
rt+1+γmax

a
Q̂(st+1, a,w

−)−Q̂(st , at ,wt)
]
∇Q̂(st , at ,wt)

where w− are the weights of a frozen target network

Every k updates: w− ← wt

Yields a cheap approximation to NFQ

Gradients estimated from mini-batches

Mini-batches randomly sampled via experience replay

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 26 / 34

DQN results

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 27 / 34

Rainbow [Hessel et al. 2017]

Double Q-learning [van Hasselt et al. 2015]

Prioritised replay [Schaul et al. 2015]

Duelling networks [Wang et al. 2016]

Multi-step targets [Sutton 1988]

Distributional RL [Bellemare et al. 2017]

Noisy nets [Fortunato et al. 2017]

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 28 / 34

Double DQN [van Hasselt et al. 2015]

Q-learning takes max of noisy Q estimate: yields bias

Instead separate estimation from maximisation

Note that:

max
a

Q̂(st+1, a,wt) = Q̂(st+1, arg max
a

Q̂(st+1, a,wt),wt)

Double Q-learning uses two independent sets of weights:

Q̂(st+1, arg max
a

Q̂(st+1, a,wt),w
′
t)

Double DQN uses target network, yielding update target:

rt+1 + γQ̂(st+1, arg max
a

Q̂(st+1, a,wt),w
−)

Why not swap wt and w−?

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 29 / 34

Prioritised replay [Hessel et al. 2017]

Prioritised sweeping [Moore & Atkeson 1993]

I Model-based RL

I Efficient planning upon model updates

I Starting from updated state, put tree of predecessors in priority queue

I Priority is magnitude of update, i.e., TD error

Prioritised replay [Schaul et al. 2015] extends to model-free RL

I Sample transitions from replay buffer with probability based on last
encountered absolute TD error:

pt ∝
∣∣∣rt+1 + γmax

a
Q̂(st+1, a,w

−)− Q̂(st , at ,wt)
∣∣∣ω

I New transitions have maximal priority

I Can inappropriately favour stochastic transitions

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 30 / 34

Duelling networks [Wang et al. 2016]
Advantage function compares given action to expected action:

A(s, a) = Q(s, a)− V (s)

Could represent Q(s, a) as sum of two parts:

Q̂(s, a) = V̂ (s) + Â(s, a)

To improve identifiability force advantage of a∗ to be zero:

Q̂(s, a) = V̂ (s) + Â(s, a)−maxa′Â(s, a′)

More stable to use average instead of max:

Q̂(s, a) = V̂ (s) + Â(s, a)− 1

|A|
∑
a′

Â(s, a′)

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 31 / 34

Multi-step targets [Sutton 1988]

The n-step return is:

Rn
t =

n−1∑
k=0

γk rt+k+1

Multi-step DQN target:

Rn
t + γn max

a
Q̂(st+n, a,w

−)

Is this on-policy or off-policy?

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 32 / 34

Distributional RL [Bellemare et al. 2017]

Distributional RL learns the distribution of returns instead of the
expected returns

Represent distribution with probability masses placed at discrete
support points

Return distribution satisfies as variant of the Bellman equation

TD error becomes a KL divergence

Models aleatoric, not epistemic, uncertainty

Why does it work? [Imani & White 2018]

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 33 / 34

Noisy nets [Fortunato et al. 2017]

Replace linear layer b + Wx with:

b + Wx + bnoisy � εb + (Wnoisy � εw)x

where εb and εw are random variables, e.g., Gaussian and � denotes
element-wise product

Over time network can learn to ignore noisy stream

Rate differs across search space

Automatic state-conditional annealing of exploration

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 34 / 34

