
Introduction to Reinforcement Learning

Lecture 3: Policy Gradients & Model-Based RL

Shimon Whiteson
Dept. of Computer Science

University of Oxford

(based on material from
Rich Sutton & Andrew Barto)

November 10, 2020

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 1 / 37

Policy gradient methods

Optimise πθ with gradient ascent on expected return:

Jθ = Es∼ρ(s),a∼πθ(s,·) [Qπ(s, a)]

where ρ(s) = p(s0 = s)

Useful when:
I Greedification is hard, e.g., continuous actions

I Stochastic policies are preferred, e.g., partial observability

I Optimal policies are simpler than optimal value functions

I Prior knowledge is easier to express about policies

Typically converges to local optimum

Gradient estimates typically have high variance

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 2 / 37

Simple case
One-step MDP with s ∼ ρ(·):

Jθ = Es∼ρ,a∼πθ(s,·) [Ra
s]

=
∑
s

ρ(s)
∑
a

πθ(s, a)Ra
s

Take the gradient:

∇θJθ =
∑
s

ρ(s)
∑
a

∇θπθ(s, a)Ra
s

=
∑
s

ρ(s)
∑
a

πθ(s, a)
∇θπθ(s, a)

πθ(s, a)
Ra
s

=
∑
s

ρ(s)
∑
a

πθ(s, a)∇θ log πθ(s, a)Ra
s

= Es∼ρ,a∼πθ(s,·) [∇θ log πθ(s, a)Ra
s]

Sampling yields the likelihood ratio or score function estimator

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 3 / 37

Policy gradient theorem & REINFORCE

The policy gradient theorem [Sutton et al. 2000] uses an unrolling
argument to extend this to general MDPs:

∇θJθ = Es∼ρπ(s),a∼πθ(s,·) [∇θ log πθ(s, a)Qπ(s, a)]

where ρπ(s) is the discounted ergodic occupancy measure:

ρπ(s) =
∞∑
i=0

γ ip(si = s | π)

Using sample returns yields REINFORCE [Williams 1992]:

∇θJθ ≈ g(τ) =
T∑
t=0

∇θ log πθ(st , at)Rt

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 4 / 37

Actor-Critic Methods [Sutton et al. 00]
Reduce variance in g(τ) by learning a critic Q(s, a):

g(τ) =
T∑
t=0

∇θ log πθ(st , at)Q(st , at)

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 5 / 37

Control variates

Control variates reduce variance in Monte Carlo sampling

Let x̂ be an unbiased estimator of x : E [x̂] = x , where x is unknown

Let ŷ be an unbiased estimator of y : E [ŷ] = y , where y is known

Another unbiased estimator of x is:

x̂ ′ = x̂ − λ(ŷ − y),

with variance:

Var(x̂ ′) = Var(x̂) + λ2Var(ŷ)− 2λCov(x̂ , ŷ)

If x̂ and ŷ are sufficiently correlated, then ∃λ,Var(x̂ ′) < Var(x̂)

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 6 / 37

Baselines
Policy gradient methods use a control variate called a baseline b(s):

g(τ) =
T∑
t=0

∇θ log πθ(st , at)(Q(st , at)− b(st))

Estimator remains unbiased if b does not depend on a:

Ea∼πθ(s,·) [∇θ log πθ(s, a)b(s)] = Ea∼πθ(s,·)

[
∇θπθ(s, a)

πθ(s, a)
b(s)

]
=
∑
a

πθ(s, a)
∇θπθ(s, a)

πθ(s, a)
b(s)

= b(s)
∑
a

∇θπθ(s, a)

= b(s)∇θ
∑
a

πθ(s, a)

= b(s)∇1 = 0

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 7 / 37

Advantage functions

Common choice of baseline is the value function: b(s) = V (s):

g(τ) =
T∑
t=0

∇θ log πθ(st , at)A(st , at)

where A(s, a) = Q(s, a)− V (s) is the advantage function

Q(s, a) is often harder to learn than V (s)

Replace it with a bootstrap target: rt + γV (st+1)

TD error rt + γV (st+1)− V (s) is an unbiased estimate of A(st , at):

g(τ) =
T∑
t=0

∇θ log πθ(st , at)(rt + γV (st+1)− V (st))

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 8 / 37

Generalised advantage estimation (1) [Schulman et al. 2015]

Target used in TD error estimate of advantage could bootstrap later:

Â
(k)
t =

k−1∑
i=0

γ i rt+i + γkV (st+k)− V (st)

Let δt = rt + γV (st+1)− V (st) be the TD error and note that:

Â
(2)
t = rt + γrt+1 + γ2V (st+2)− V (st)

= rt + γV (st+1)− V (st) + γrt+1 + γ2V (st+2)− γV (st+1)

= δt + γδt+1

More generally:

Â
(k)
t =

k−1∑
i=0

γ iδt+i

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 9 / 37

Generalised advantage estimation (2) [Schulman et al. 2015]

Now define the generalised advantage estimator:

Â
GAE(γ,λ)
t = (1− λ)

(
Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + · · ·

)
= (1− λ)

(
δt + λ(δt + γδt+1) + λ2(δt + γδt+1 + γ2δt+2) + · · ·

)
= (1− λ)

(
δt(1 + λ+ λ2 + · · ·) + γδt+1(λ+ λ2 + · · ·) + · · ·

)
= (1− λ)

(
δt

1

1− λ
+ γδt+1

λ

1− λ
+ · · ·

)
=
∞∑
i=0

(γλ)iδt+i

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 10 / 37

Deep Actor-Critic Methods
Actor and critic are both deep neural networks

I Convolutional and recurrent layers

I Actor and critic share layers

Both trained with stochastic gradient descent

I Actor trained on policy gradient

I Critic trained on TD(λ) or Sarsa(λ)

Asynchronous advantage actor-critic (A3C) [Mnih et al. 2016]

I Multiple asynchronous actors

I Shared convnet, softmax layer for π, linear layer for V

I Gradient based on k-step TD-error:

g(τ) =
T∑
t=0

∇θ log πθ(st , at)(
k−1∑
i=0

γ i rt+i + γkV (st+k)− V (st))

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 11 / 37

Performance Collapse
Steps in parameter space are unbounded in policy space

Example due to Agustinus Kristiadi1:

1https://wiseodd.github.io/techblog/2018/03/14/natural-gradient/
Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 12 / 37

https://wiseodd.github.io/techblog/2018/03/14/natural-gradient/

Performance Collapse

Another example, due to Joshua Achiam2

πθ(a) =

{
σ(θ) a = 1

1− σ(θ) a = 2

Can cause irrevocable performance collapse

2
http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_13_advanced_pg.pdf

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 13 / 37

http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_13_advanced_pg.pdf

Natural policy gradients [Kakade 2001]
Maximise objective for fixed KL (ignoring s for simplicity):

arg max
∆θ

J(θ + ∆θ)

s. t. KL(πθ||πθ+∆θ) = C

Approximate KL with second-order Taylor expansion:

KL(πθ||πθ+∆θ) ≈ 1

2
∆θ>F∆θ,

where F is the Fisher information matrix:

F = Cov(∇θ log πθ(a)) = Ea

[
(∇θ log πθ(a))(∇θ log πθ(a))>

]
= ∇2

θ′KL(πθ||πθ′)|θ′=θ = ∇2
θ′KL(πθ′ ||πθ)|θ′=θ

Result is an update based on the natural gradient:

∇NJ(θ) = F−1∇J(θ)

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 14 / 37

Trust Region Policy Optimisation [Schulman et al. 2015]

Computing and inverting F is intractable for large NNs

Instead, solve F∇NJ(θ) = ∇J(θ) using conjugate gradient method

Requires only cheaper matrix-vector product function f (v) = Fv

Quadratic approx. may violate trust region: KL(πθ||πθ+∆θ) ≤ C

Backtracking line search iterates on j to find update:

θi+1 = θi + αj∆i

s. t. L(θi , θi+1) ≥ 0,

KL(πθi ||πθi+1
) ≤ C ,

where ∆i is the CG update and for τ ∼ πθi :

L(θi , θi+1) =
T∑
t=0

γt
πθi+1

(st , at)

πθi (st , at)
Aπθi (st , at)

≈ J(θi+1)− J(θi)

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 15 / 37

Proximal Policy Optimisation [Schulman et al. 2017]
TRPO still requires conjugate gradient descent and line search
Solve unconstrained optimisation problem instead with adaptive λi :

θi+1 = arg max
θ
L(θi , θ) + λiKL(πθi ||πθ),

Or optimise a clipped objective weighted by rθt = πθ(at ,st)
πθold (at ,st)

:

Lclip(θi , θ) =
T∑
t=0

[
min(rθt A

πθi , clip(rθt , 1− ε, 1 + ε)Aπθi)
]

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 16 / 37

Deterministic policy gradients [Silver et al. 2014]

Given continuous actions and a deterministic policy π(s), the
deterministic policy gradient theorem says:

∇θJθ = Es∼ρπ(s)

[
∇θπθ(s)∇aQ

π(s, a = π(s))
]

Estimated from a τ gathered with a stochastic exploration policy:

∇θJθ ≈ g(τ) =
T∑
t=0

∇θπθ(st)∇aQ(st , a = π(st)),

where Q is a critic trained off policy

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 17 / 37

Expected policy gradients [Ciosek & Whiteson 2018]

Reexamine the policy gradient theorem:

∇θJ = Es∼ρ(s)

[∫
a
∇θπθ(s, a)Q(s, a)da

]
= Es∼ρ(s) [I (s)]

Can often solve I (s) =
∫
a∇θπθ(s, a)Q(s, a)da analytically for fixed s

Theoretical equivalences, e.g., for a Gaussian policy and quadratic
critic, mean update equivalent to DPG

Discrete actions are easy: I (s) =
∑

a∇πQ(a, s)

In practice: works well for continuous actions; not worth it for discrete
actions because Q-function is hard to learn

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 18 / 37

Model-based reinforcement learning

Planning methods require prior knowledge of the MDP

Temporal difference methods are model-free or direct reinforcement
learning methods

Model-based or indirect reinforcement learning assumes no prior
knowledge but learns a model of the MDP and then plans on it

A model is anything the agent can use to predict how the
environment will respond to its actions

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 19 / 37

Types of models

A full or distribution model is a complete description of Pa
ss′ and Ra

ss′ :
space complexity is O(|S |2|A|)

A sample or generative model can be queried to produce samples r
and s ′ given any s and a

A trajectory or simulation model can simulate a complete episode but
cannot jump to an arbitrary state

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 20 / 37

Planning, learning, and acting

Model-based methods
make fuller use of
experience: lower sample
complexity

Model-free methods are
simpler and not affected
by modelling errors

Can also be combined

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 21 / 37

Dyna architecture

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 22 / 37

Dyna-Q (1)

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 23 / 37

Dyna-Q (2)

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 24 / 37

Vanilla model-based reinforcement learning

Repeat:
I Take exploratory action (based on greedy policy)

I Use resulting immediate reward and state to update a
maximum-likelihood model:

P̂a
ss′ =

nass′

nas
, R̂a

ss′ =
1

nass′

na
ss′∑

i=1

ri

I Solve the model using value iteration

I Update greedy policy

Computationally expensive

But don’t have to plan to convergence or plan on every step

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 25 / 37

Rmax

Use vanilla model-based RL

However, for all (s, a) for which nas < m:
I Remove all transitions from (s, a) from model
I Add transition of prob. 1 to artificial, terminal jackpot state
I Immediate reward on this transition is Rmax

Plan on altered model

Remove artificial transitions once nas ≥ m

Agent will plan how to visit insufficiently visited states: efficient
exploration

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 26 / 37

Full versus sample backups (1)

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 27 / 37

Full versus sample backups (2)

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 28 / 37

Prioritised sweeping (1)

Which states or state-action pairs should be generated during
planning?

Work backwards from states whose values have just changed:

Maintain a queue of state-action pairs whose values would change a
lot if backed up, prioritized by the size of the change

When a new backup occurs, insert predecessors according to their
priorities

Always perform backups from first in queue

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 29 / 37

Prioritised sweeping (2)

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 30 / 37

Prioritised sweeping (3)

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 31 / 37

Reinforcement learning theory (1)

Model-free temporal difference methods such as Q-learning and Sarsa are
guaranteed to converge to the optimal policy in the limit under the
following conditions:

1 S and A are finite

2
∑

t α
sa
t =∞ and

∑
t(α

sa
t)2 <∞

3 Var{Rss′
a } <∞

4 γ < 1

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 32 / 37

Reinforcement learning theory (2)

Rmax is an example of a PAC-MDP algorithm, for which the following
probably approximately correct guarantee holds:

Let A be a PAC-MDP algorithm and At be the policy of A at
timestep t

Sample complexity of A is the number of timesteps t such that
V At (st) < V ∗(st)− ε
With probability at least 1− δ, the sample complexity of A is less than
some polynomial in the quantities (|S |, |A|,Rmax, 1/ε, 1/δ, 1/(1− γ))

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 33 / 37

Reinforcement learning theory (3)

PAC guarantees are very general but only apply to states the agent
actually visits: do not consider that exploration phase may have
doomed the agent to a “hell” region.

Stronger but less general guarantees are possible by bounding the
regret: the expected cumulative return of an optimal policy minus the
cumulative return of the algorithm

Bounding regret requires making reachability assumptions, e.g.,
UCRL2 has reget linear in the diameter: the maximum average
number of steps needed to reach any s ′ from any s

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 34 / 37

Reinforcement learning theory (4)

In principle, we can compute a Bayes-optimal policy for balancing
exploration and exploitation

Problem of learning in an MDP is cast as one of planning in a
POMDP where the hidden state corresponds to the unknown model
parameters: sPOMDP = (sMDP ,T ,R)

We will return to this idea when we have studied POMDPs

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 35 / 37

Pseudocounts [Bellemare et al. 2016]

Let µ̂(s) be a generative model of the on-policy distribution µ(s)

Let µ̂′(s) be the updated model after a new visit to s

Suppose that µ̂ was count-based such that

µ̂(s) =
c(s)

C
µ̂′(s) =

c(s) + 1

C + 1

where c(s) is the number visits to s and C is the total state visits

Solve this linear system to find c(s) and C

Give a bonus inversely proportional to pseudocount

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 36 / 37

TreeQN [Farquhar et al. 2017]

Tree Transitioning Value Prediction & Backup

zt

st

e
n
c
o
d
e
r

a1

a2

a3 t
r
a
n
s
i
t
i
o
n

t
r
a
n
s
i
t
i
o
n

t
r
a
n
s
i
t
i
o
n

t
r
a
n
s
i
t
i
o
n

Q

Q(st, a3)b
a
c
k
u
p

v
a
l
u
e

Q(st, a2)b
a
c
k
u
p

v
a
l
u
e

Q(st, a1)b
a
c
k
u
p

v
a
l
u
e

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 37 / 37

