Introduction to Reinforcement Learning

Lecture 3: Policy Gradients & Model-Based RL

Shimon Whiteson
Dept. of Computer Science
University of Oxford

(based on material from
Rich Sutton & Andrew Barto)

November 10, 2020

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 1/37

Policy gradient methods
@ Optimise my with gradient ascent on expected return:
Jo = Es~p(s),a~7rg(s,~) [Qﬂ(sa a)]

where p(s) = p(sp = s)

@ Useful when:

» Greedification is hard, e.g., continuous actions
» Stochastic policies are preferred, e.g., partial observability
» Optimal policies are simpler than optimal value functions

» Prior knowledge is easier to express about policies
@ Typically converges to local optimum
o Gradient estimates typically have high variance

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 2/37

Simple case
@ One-step MDP with s ~ p(-):

Jo :Eswp arTy(s)[R]
:Zps Zﬂ'y s,a)R
S a

@ Take the gradient:

Vodp = Z pls Z Vomo(s,a)RZ
V@T(’g s,a)
= mo(s,a) ——5-RZ
zs:p Z ot “m(s,a)
= Zp s Zm(s,a Vo log (s, a)R?

= ESNp a~my(s [VG log 77'9(5 a)R]

@ Sampling yields the likelihood ratio or score function estimator

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 3/37

Policy gradient theorem & REINFORCE

@ The policy gradient theorem [Sutton et al. 2000] uses an unrolling
argument to extend this to general MDPs:

Vody = IEs~p’f(s),ar\z7r9(s,~) [VG log 71'9(57 a) Qﬂ-(sa a)]

where p™(s) is the discounted ergodic occupancy measure:

o0

pr(s) = 'p(si=s]|m)

i=0

@ Using sample returns yields REINFORCE [Williams 1992]:

T
Vodop = g(7) = Z Vo log mg(st, at)Re
t=0

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 4/37

Actor-Critic Methods [Sutton et al. 00]

@ Reduce variance in g(7) by learning a critic Q(s, a):

-
g(r) = Z Vg log mg(st, at) Q(st, ar)
t=0
™
T

Shimon Whiteson (Oxford) Intro to Reinforcement Learning

Control variates
@ Control variates reduce variance in Monte Carlo sampling
@ Let X be an unbiased estimator of x: E [%] = x, where x is unknown
@ Let y be an unbiased estimator of y: E [§] = y, where y is known
@ Another unbiased estimator of x is:

K =%=MNy-vy)

with variance:

Var(&') = Var(&) + A*Var(9) — 2A\Cov(X,)

e If X and y are sufficiently correlated, then 3\, Var(X') < Var(%)

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 6/37

Baselines
@ Policy gradient methods use a control variate called a baseline b(s):

;
g(r) = Vologma(st. a)(Q(st, ac) — b(st))

t=0
@ Estimator remains unbiased if b does not depend on a:
Vomo(s, a)
Ea“’”@(sv') [V9 |Og 7(9(5, a)b(s)] = anwe(s,-) [779(5,‘3)[3(5)
Vomy(s, a)
= ——F———b
Zm(s, a) T0(5.2) (s)

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 7/37

Advantage functions

@ Common choice of baseline is the value function: b(s) = V/(s):

T

g(r) = _Vglogmy(st, ar)A(st, ar)
t=0

where A(s,a) = Q(s, a) — V(s) is the advantage function
@ Q(s,a) is often harder to learn than V/(s)

@ Replace it with a bootstrap target: ry + vV(s¢+1)

@ TD error ry + yV(st41) — V/(s) is an unbiased estimate of A(s;, a;):

T

g(r) = Valogmo(st, ar)(re + 7V (st41) — V(st))
t=0

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 8/37

Generalised advantage estimation (1) [Schulman et al. 2015]

@ Target used in TD error estimate of advantage could bootstrap later:

k—
AL Z Y resi + 7V (serk) = V(st)
i=0

o Let 0: = rt +vV/(st+1) — V(st) be the TD error and note that:

A?) =rt+yr+1 + ’Y2 V(sty2) — V(st)
= re +yV(se41) = V(st) + vres1 + 72 V(se42) — vV (se41)

=0t + Y0e41
@ More generally:
k=1
Agk) = Z’Y'(SHi
i=0

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 9/37

Generalised advantage estimation (2) [Schulman et al. 2015]

Now define the generalised advantage estimator:

AEAE(%)\) =(1-)) A"gl) +)\Agz) +)\2,2\g3) 4.)

= (1= X) (0t + A(6¢ +70t41) +)\2(5t +Y0¢q1 + 725t+2) + -)

—(1-))

/N -7 NN

5t(1+A+/\2+---)+76t+1(>\+A2+---)+~--)

1 A
=(1-2X) <5t1_)\+’}/5t+1m+“'>

=Y (V) Sty
i=0

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 10/37

Deep Actor-Critic Methods

@ Actor and critic are both deep neural networks
» Convolutional and recurrent layers
» Actor and critic share layers
@ Both trained with stochastic gradient descent
» Actor trained on policy gradient
» Critic trained on TD(A) or Sarsa()\)
@ Asynchronous advantage actor-critic (A3C) [Mnih et al. 2016]

» Multiple asynchronous actors
» Shared convnet, softmax layer for 7, linear layer for V

» Gradient based on k-step TD-error:

T k—1
g(r) = ZVe log 7o (st 3t)(z Vi + 7V (se04) = V(st))
t=0 i=0

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 11/37

Performance Collapse

@ Steps in parameter space are unbounded in policy space

@ Example due to Agustinus Kristiadi:

0200

ows |

1

"https://wiseodd.github.io/techblog/2018/03/14/natural-gradient/

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020

12/37

https://wiseodd.github.io/techblog/2018/03/14/natural-gradient/

Performance Collapse

@ Another example, due to Joshua Achiam?

o(0) a=1
mp(a) =

1—0(0) a=2
o theta = 4 theta = 2 theta = 0
0.8 - 1 1
0.6 - 1 J
0.4 1 R
0.2 1 J
0.0 - 4 E

al a2 al a2 al a2

@ Can cause irrevocable performance collapse

2
http://rail.eecs.berkeley.edu/deeprlcourse-fal7/f17docs/lecture_13_advanced_pg.pdf

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 13/37

http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_13_advanced_pg.pdf

Natural policy gradients [Kakade 2001]

@ Maximise objective for fixed KL (ignoring s for simplicity):
argmax J(0 + A0)
A0
s. t. KL(mg||mgrng) = C

@ Approximate KL with second-order Taylor expansion:

1
KL(mol|mo+n0) ~ EAHTFAO,

where F is the Fisher information matrix:
F = Cov(V log m(a)) = E, | (Vo log m(2))(Vs log m(2)) |
= Vo KL(mo||me)|or=0 = VKL (g [|70) o=
@ Result is an update based on the natural gradient:
VnJ(0) = F1VJ(0)
November 10, 2020 14/37

Trust Region Policy Optimisation [Schulman et al. 2015]
@ Computing and inverting F is intractable for large NNs

@ Instead, solve FV yJ(0) = VJ(0) using conjugate gradient method
@ Requires only cheaper matrix-vector product function f(v) = Fv
@ Quadratic approx. may violate trust region: KL(mg||mgrng) < C

@ Backtracking line search iterates on j to find update:
Oir1 =0 + o/ A
s. t. £(0;,0i41) >0,
KL(779,'H7T9,'+1) <C,
where A; is the CG update and for 7 ~ 7,
L0 0) = 3t 02
i,0i11) = ;v 0. (56,20) i(st, at)
~ J(0i+1) — J(6)
November 10, 2020 15/37

Proximal Policy Optimisation [Schulman et al. 2017]

@ TRPO still requires conjugate gradient descent and line search

@ Solve unconstrained optimisation problem instead with adaptive \;:

0i11 = argmax L(0;,0) + X\iKL(my,||m9),
6

@ Or optimise a clipped objective weighted by rte =

mo(at,st) .
Weo/d(atast) ’

-
Leiip(0;,0) = Z min(r! A7 clip(rf,1 — €, 1+ €)A™)]
t=0

CLIP

A>0

0

Shimon Whiteson (Oxford) Intro to Reinforcement Learning

1 1+e¢

T

A<O
1-€1

LCLIP

November 10, 2020

16 /37

Deterministic policy gradients [Silver et al. 2014]

@ Given continuous actions and a deterministic policy 7(s), the
deterministic policy gradient theorem says:

Vodyp = Egopr(s) [Veﬂe(s)VaQﬂ(Sy a=m(s))

o Estimated from a 7 gathered with a stochastic exploration policy:

.
Vodo = g(r) = Vomo(st)VaQ(st, a = m(st)),
t=0

where @ is a critic trained off policy

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 17 /37

Expected policy gradients [Ciosek & Whiteson 2018]

@ Reexamine the policy gradient theorem:
Vod = IE’sma,o(s) |:/ VGWG(Sa Q)Q(S, a)da =]Esrvp(s) [I(S)]

e Can often solve I(s) = [, Vgmy(s, a)Q(s, a)da analytically for fixed s

@ Theoretical equivalences, e.g., for a Gaussian policy and quadratic
critic, mean update equivalent to DPG

@ Discrete actions are easy: /(s) =), V7 Q(a,s)

@ In practice: works well for continuous actions; not worth it for discrete
actions because Q-function is hard to learn

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 18/37

Model-based reinforcement learning

@ Planning methods require prior knowledge of the MDP

@ Temporal difference methods are model-free or direct reinforcement
learning methods

@ Model-based or indirect reinforcement learning assumes no prior
knowledge but learns a model of the MDP and then plans on it

@ A model is anything the agent can use to predict how the
environment will respond to its actions

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 19/37

Types of models

@ A full or distribution model is a complete description of PZ

v and RZ,:
space complexity is O(|S|?|A|)

@ A sample or generative model can be queried to produce samples r
and s’ given any s and a

@ A trajectory or simulation model can simulate a complete episode but
cannot jump to an arbitrary state

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 20/37

Planning, learning, and acting

@ Model-based methods

value/policy
make fuller use of
expenlen(.:e: lower sample acting
complexit)
P Y planning direct
RL
@ Model-free methods are
simpler and not affected
by modelling errors model experience
@ Can also be combined
model
learning

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 21/37

Dyna architecture

VAN

Policy/value functions

planning update

direct RL simulated

update experience
real
experience
search
learning control
Model

[Environment]

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 22/37

Dyna-Q (1)

Initialize Q(s,a) and Model(s,a) for all s € S and a € A(s)
Do forever:
(a) s « current (nonterminal) state
(b) @ — e-greedy(s, Q)
(c) Execute action a; observe resultant state, s’, and reward, r
(d) Q(s,0) — Q(s,a) + afr + ymaxy Q(s',a) — Q(s, a)]
(e) Model(s,a) «+ s',r (assuming deterministic environment)
(f) Repeat N times:
s « random previously observed state
a + random action previously taken in s
s',r <« Model(s,a)
Q(sa (1,) — Q(S, a) + 01[7" + 7y maxg Q(s/a a/) B Q(S, a)]

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020

23/37

Dyna-Q (2)

Steps
per
episode

800+

600

4004

200+

144

S
H actions

0 planning steps
(direct RL only)

5 planning steps

50 planning steps

Shimon Whiteson (Oxford)

T
10 20 30 40 50

Episodes

Intro to Reinforcement Learning November 10, 2020

24/37

Vanilla model-based reinforcement learning

@ Repeat:
» Take exploratory action (based on greedy policy)

> Use resulting immediate reward and state to update a
maximume-likelihood model.

/
SS
Pa __ nss’ pa __ ri
ss’ T na ss’ - !
i=1

s ss’
» Solve the model using value iteration
» Update greedy policy
o Computationally expensive

@ But don't have to plan to convergence or plan on every step

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 25/37

Rmax

Use vanilla model-based RL
However, for all (s, a) for which n2 < m:

» Remove all transitions from (s, a) from model
» Add transition of prob. 1 to artificial, terminal jackpot state
» Immediate reward on this transition is Ryax

Plan on altered model

Remove artificial transitions once nZ > m

Agent will plan how to visit insufficiently visited states: efficient
exploration

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 26 /37

Full versus sample backups (1)

Value Full backups Sample backups
estimated (DP) (one-step TD)
S 5
VI(S) a L
r B
5" 5
policy evaluation TD(0)

;
s
Vit X'
.
P

value iteration

s.a s.a
“ r
1(.)
Qas) s g
a a'
Q-policy evaluation Sarsa
sa sa
’ -
- o .
Olas)
max max
a da
Q-value iteration Q-learing

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 27 /37

Full versus sample backups (2)

1 -
full
sample
back%ps backups
RMS error &
in value b=2 (branching factor)
estimate kN\
iy
04 : : .
0 15 2b

Number of max 0O(s’,a’) computations
a

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 28 /37

Prioritised sweeping (1)

@ Which states or state-action pairs should be generated during
planning?
@ Work backwards from states whose values have just changed:

@ Maintain a queue of state-action pairs whose values would change a
lot if backed up, prioritized by the size of the change

@ When a new backup occurs, insert predecessors according to their
priorities

@ Always perform backups from first in queue

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 29/37

Prioritised sweeping (2)

Initialize Q(s,a), Model(s,a), for all s,a, and PQueue to empty
Do forever:
a) s « current (nonterminal) state
b) a — policy(s, Q)
c) Execute action a; observe resultant state, s’, and reward, r
d) Model(s,a) « s',r
&) p o r +ymaxy Q(s',a') — Q(s,0)|.
f) if p > 0, then insert s, a into PQueue with priority p
g) Repeat N times, while PQueue is not empty:
s,a « first(PQueue)
§',r — Model(s,a)
Q(S,(l) — Q(S,(I) + 0‘[71 =+ 7y maxy Q(slval) - Q(S,(I)]
Repeat, for all 5, a predicted to lead to s:
7 «+ predicted reward
D — |F + ymax, Q(s,a) — Q(S,a)|.
if p > 0 then insert §,a into PQueue with priority p

Shimon Whiteson (Oxford) Intro to Reinforcement Learning

November 10, 2020

30/37

Prioritised sweeping (3)

1074
105 Dyna-Q
10°
Backups
until 104 prioritized
optimal sweeping
solution .
107
10 T

T | T T T T 1
0 47 94 186 376 752 1504 3008 6016
Gridworld size (#states)

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 31/37

Reinforcement learning theory (1)

Model-free temporal difference methods such as Q-learning and Sarsa are
guaranteed to converge to the optimal policy in the limit under the
following conditions:

@ S and A are finite

@ X ,af =coand 3 (aF)’ <o
Q@ Var{R¥'} <

Q<1

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 32/37

Reinforcement learning theory (2)

Rmax is an example of a PAC-MDP algorithm, for which the following
probably approximately correct guarantee holds:
@ Let A be a PAC-MDP algorithm and A; be the policy of A at
timestep t
@ Sample complexity of A is the number of timesteps t such that
VAt(St) < V*(St) — €
@ With probability at least 1 — 6, the sample complexity of A is less than
some polynomial in the quantities (|S|, |A|, Rmax, 1/€,1/0,1/(1 — 7))

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 33/37

Reinforcement learning theory (3)

@ PAC guarantees are very general but only apply to states the agent
actually visits: do not consider that exploration phase may have
doomed the agent to a “hell” region.

@ Stronger but less general guarantees are possible by bounding the
regret: the expected cumulative return of an optimal policy minus the
cumulative return of the algorithm

@ Bounding regret requires making reachability assumptions, e.g.,
UCRL2 has reget linear in the diameter: the maximum average
number of steps needed to reach any s’ from any s

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 34 /37

Reinforcement learning theory (4)

@ In principle, we can compute a Bayes-optimal policy for balancing
exploration and exploitation

@ Problem of learning in an MDP is cast as one of planning in a
POMDP where the hidden state corresponds to the unknown model
parameters: spompp = (Smpp, T, R)

@ We will return to this idea when we have studied POMDPs

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 35/37

Pseudocounts [Bellemare et al. 2016]

@ Let i(s) be a generative model of the on-policy distribution p(s)
@ Let fi(s) be the updated model after a new visit to s
@ Suppose that /i was count-based such that

C(S) c(s)+1

~ ~l
ps) =<2 W)= 2
where ¢(s) is the number visits to s and C is the total state visits
@ Solve this linear system to find c(s) and C

@ Give a bonus inversely proportional to pseudocount

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 36 /37

TreeQN [Farquhar et al. 2017]

N NN R RN AN N EEEEENEEY ¢ENENEEEEEEEEEEEEEEEEEEEES
. Tree Transitioning ut Value Prediction & Backup .
- |]
. ~ o M) —\ .
: g .
. o 9 S~ .
i = i [
: : | o W) e :
. g g G|~ B .
.
: i N
. H =
. - s -)
[] O\)
= =} =} - (M) =
&l - S 2) .
[0} [}
o| = e e 3 i [-
St le} o o — U_> ——
O) c c © S A []
= & & > Q/VQ .
0| a o g \D/ (st,a2)
[] + + - L)
. - . - \
M () " M))
. — L]
. D 9 5 .
] — =1 i]
u (9] —~ f3) n
u o} o I} .
M © > Q M
' 2 ~0- :
.
. ~—/ / —/ -
. .
' N

Essssssssssssssssenn? CEEEEEEEEEEEEEEEEEEEEEEER

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 10, 2020 37/37

