
Tutorial 3: Policy Gradients and Actor Critic

Reinforcement Learning

{msmith, risto.vuorio }@cs.ox.ac.uk

In this practical, we study policy gradients for continuous domains. The practical is split into two parts. In
Part I, we derive the policy gradient theorem from first principles for continuous domains and (optionally!)
explore the assumptions required for its derivation. In Part II, we discuss methods of implementing the
policy gradient theorem using estimators. We derive the REINFORCE estimator before extending policy
gradient methods to actor-critic algorithms. We test our algorithms on continuous Pendulum-V0 task,
before exploring differences between value-based and policy-based reinforcement learning algorithms. The
questions marked with ”*” or BONUS are optional, you should answer them last.

If this all sounds very daunting, don’t worry! We don’t expect you to finish everything during the practical.
The aim is to understand policy gradients and reinforcement learning beyond a superficial algorithmic level.
If you get stuck, ask for help, and if you are really stuck, just move on to the next part. We will provide
full solutions at the end.

First of all, it is important that you get the coding environment set up:

Installing the Environment and Running the Code

1. Make sure conda is installed and updated by opening a terminal running the command:

conda update --all

If you haven’t got conda installed, run the command

pip install conda

2. Unzip the file CDT Policy Gradients and save it somewhere convenient.

3. Open the terminal and navigate to inside the unzipped CDT Policy Gradients folder. Now build
the virtual conda environment by running

conda env create -f environment.yml

This can take up to 10 minutes to build, so you may want to start the first exercise!

4. You should now have a virtual environment called cdt policy gradients with all the packages
required to run the practical. You can activate this environment using the command

source activate cdt policy gradients

5. Within the activated environment, you can run each experiment as follows:

python part ii.py

1

Run the above code and after a few seconds, you should see the results of the first evaluation. The
code should print something like:

Epoch: 0, Average Test Return: -1305.305089977554

This should continue for 50 epochs. As the agent is not be learning (yet!), the value of Average

Test Return will hover in the region -1800 to -1100 depending on the initialisation of the network.

6. At the end of the practical, you can deactivate the virtual environment and remove it from your
machine by running

source deactivate

conda remove --name cdt policy gradients --all

Notation and Setting

s0 s1 s2 sN

a0 a1 aN−1

Figure 1: Graphical Model of MDP

We can formally define continuous discounted, infinite
horizon MDPs as a tuple 〈S,A, p, r, γ〉. Here, S and A
are sets of continuous states and actions respectively, p is
the state transition distribution p(s′|s, a) : S×A→ S, r
is the reward function r(a, s) : A× S → R and γ ∈ [0, 1)
is the discount factor. The graphical model for the N -
step MDP is shown in Fig. 1; dashed lines are used to
emphasise the choice that the agent has in their policy
π(a|s).

We define a trajectory of length N as τN :=
(s0, a0, s1, a1, · · · sN) and its corresponding distribution as:

pN (τ) := p0(s0)
N∏
i=1

π(ai−1|si−1)p(si|si−1, ai−1).

The aim is to find a policy that maximises long term, expected discounted reward over all possible trajec-
tories, which when using a parametrised policy πθ(a|s), yields the objective:

J(θ) = Ep(τ)

[∞∑
t=0

γtrt

]
=

∫
p0(s0)

∫
πθ(a0|s0)Qπ(a0, s0)da0ds0, (1)

where p(τ) := limN→∞ pN (τ) and we have used the shorthand rt := r(at, st). The Q-function for our
policy is defined as the total long term, expected discounted reward over all possible trajectories given an
arbitrary starting state s0 = s and action a0 = a:

Qπ(s, a) := Ep(τ |s,a)

[∞∑
t=0

γtrt

]
,

where p(τ |s, a) := limN→∞

(
p(s1|s0 = s, a0 = a)

∏N
i=2 π(ai−1|si−1)p(si|si−1, ai−1)

)
.

2

Part I: Deriving the Policy Gradient Theorem

In policy gradient methods, we treat the objective as a function to be maximised through gradient ascent.
We therefore need an analytic, convenient closed form of its derivative. To derive this update, we introduce
the discounted state distribution and then go on to derive full analytic expression for the policy gradient.

Exercise 1. Discounted State Distribution.

Here we take a closer look into the derivation and interpretation of discounted state distribution, defined
as:

dπ(s) = (1− γ)

∞∑
t=0

γtpθ,t(s),

where pθ,t(s) is the marginal distribution over states after t timesteps under policy πθ.

(i) Let p(si+1|ai, si) be the state-transition function and πθ(ai|si) be the policy. By deriving an expres-
sion for the joint pθ(si+1, ai|si) and marginalising for actions, find the state-conditional distribution
pθ(si+1|si).

(ii) Find an expression for pθ,t(s). Hint: Use your solution to previous exercise to find expression for the
joint pθ,t(s, st−1, · · · s0) and then marginalise.

(iii) BONUS. To account for discounting, we multiply by a discount factor γt and sum over all time steps:

pN,θ(s) =
N−1∑
t=0

γtpθ,t(s)

Note that as presented above, pN,θ(s) not strictly a probability measure (why is that?). For this
reason, it is often referred to as the ergodic occupancy measure when taking the limit N → ∞. A
probabilistic interpretation is readily available though if we treat the current timestep t as a random
variable, writing pθ,t(s) = pθ(s|t) and introducing a prior distribution p(t). For the undiscounted case,

we use a uniform distribution. For the discounted case, we use a geometric prior pN (t) = γt∑N
t=1 γ

t

(what is the interpretation of geometric prior here? What does discounting represent?). We then find
the joint distribution as pN,θ(s, t) = pN,θ(s|t)p(t) and marginalise out for time:

p̃N,θ =
1∑N
t=1 γ

t

N−1∑
t=0

γtpθ(s|t).

(iv) BONUS. For infinite-horizon MDPs, we must take the limit N →∞. Show that:

dπ(s) := lim
N→∞

p̃N,θ(s) = (1− γ)
∞∑
t=0

γtpθ(s|t).

3

We refer to dπ(s) as the discounted state distribution, and see that it is related to the ergodic
occupancy measure by a scaling of 1− γ. Expanding out dπ(s) a few time steps affords some insights
into its meaning:

dπ(s) = (1− γ)
(
pθ(s|t = 0) + γpθ(s|t = 1) + γ2pθ(s|t = 2) + · · ·

)
.

We see from the above expansions that each pθ(s|t) is the distribution over states that our agent will
be in at timestep t, and therefore dπ(s) can be viewed as an average of these distributions over all
timesteps, weighted by the discounting factor γt.

Exercise 2. Policy Gradient Theorem

(i) Find the derivative of the reinforcement learning objective in Eq. (1) in terms of ∇θπθ(a0|s0) and
∇θQπ(a0, s0).

(ii) The next step is to find a solution for ∇θQπ(a0, s0). By using the Bellman equation Qπ(si, ai) =
rt + γ

∫
p(si+1|si, ai)

∫
πθ(ai+1|si+1)Qπ(si+1, ai+1)dai+1dsi+1, derive an equation for the gradient

∇θQπ(si, ai) in terms of ∇θQπ(si+1, ai+1). Use this equation to show that:∫
p0(s0)

∫
π(a0|s0)∇θQπ(s0, a0)da0ds0 =

∞∑
t=1

γt
∫
pθ,t(s)

∫
∇θπθ(a|s)Qπ(s, a)dsda.

Hint: We can use our first equation to write ∇θQπ(s0, a0) in terms of ∇θQπ(s1, a1), which can be
written in terms of ∇θQπ(s2, a2) which can be written in terms of ∇θQπ(s3, a3) etc...

(iii) Finally, use results from parts (i) and (ii) to show that:

∇θJ(θ) =
∞∑
t=0

γt
∫
pθ,t(s)

∫
∇θπθ(a|s)Qπ(s, a)dads. (2)

Exercise 3*. Irreducible, Aperiodic MDPs.

There is another thing that we have glossed over in deriving the continuous policy gradient theorem;
for Eq. (2) to converge, the discounted state distribution relies on the existence of limt→∞ p(s|t). For
illustrative purposes, we restrict ourselves to finite, discrete MDPs. The stationary distribution can be
thought of as the long-term distribution over states, independent of the starting state of the MDP. For
more detail about stationary distributions in discrete Markov chains see e.g. Murphy Chapter 17.

A known result, which is a consequence of Perron-Frobenius theorem, is that for every irreducible, aperiodic
MDP, limt→∞ p(s|t) exists and converges to the MDP’s unique stationary distribution.

(i) An irreducible MDP is one in which we can always (eventually) get back to any state in the MDP.
Give an example of a discrete MDP that is irreducible and one that is reducible. Hint: What happens
if there is an absorbing state in the MDP?

(ii) The period of a state is the greatest common divider of all time steps required to return to that
state, for example, if an agent can return to state s again only every {2, 6, 8, 12 · · · } timesteps, the
the period is 2. An aperiodic state has period 1 and an aperiodic MDP consists entriely of aperiodic
states. Is the MDP in Fig. 2 periodic? If yes, alter it to make it aperiodic; if no, alter it to make it
periodic.

4

s0

s1 s3 s5 s7

s6

s4s2

Figure 2: An 8-State Discrete MDP

(iii) If the MDP we are trying to solve is not irreducible and aperiodic, how does that effect our derivation
of policy gradient? Is this a problem in practice, and if not, why not?

Part II: Implementation and Actor Critic

Exercise 4. Monte Carlo Estimation.

In reinforcement learning, we often don’t have direct access to the Q-function to be able to obtain an
analytic solution to Eq. (2), nor do we have an analytic form for the discounted state distribution. A
common method for estimating the gradient is to use a Monte Carlo method. One problem remains,
however. We need to write Eq. (2) as an expectation over a in order to apply these methods. The
log-derivative trick ∇θπθ(a|s) = πθ(a|s)∇θ log πθ(a|s) comes to the rescue:

∇θJ(θ) ∝
∫
dπ(s)

∫
∇θπθ(a|s)Qπ(s, a)dsda,

=

∫
dπ(s)

∫
πθ(a|s)∇θ log πθ(a|s)Qπ(s, a)dsda, (3)

= Edπ(s)

[
Eπθ(a|s) [∇θ log πθ(a|s)Qπ(s, a)]

]
.

To obtain an empirical estimate to the expectation, we sample N trajectories from the environment under
our policy π from the distribution p(τ). We then form our estimate as:

∇θĴ(θ) :=
1

N

N−1∑
n=0

∞∑
t=0

γt∇θ log π(at,n|st,n)Qπ(at,n, st,n).

This estimator is known commonly as the score function estimator. Another way of thinking about this
estimator comes from swapping the order of the summations:

∇θĴ(θ) :=

∞∑
t=0

γt

(
1

N

N−1∑
n=0

∇θ log π(at,n|st,n)Qπ(at,n, st,n)

)
.

As we can view sampling from the entire trajectory N times as equivalent to obtaining N samples each
from p(s|t = 0), p(s|t = 1), · · · p(s|t = ∞), finding ∇θĴ(θ) is thus equivalent to finding the γt weighted
average of all of these samples. Compare this with the definition of dπ(s).

(i) BONUS. Is the estimator ∇θĴ(θ) biased? Can you prove this?

5

(ii) BONUS. Two problem remains; firstly we still need to sample from Qπ(a, s) to calculate our estimator.
An obvious solution to this is to use the actual sampled return Ri :=

∑∞
j=i rj as an unbiased estimate

of Qπ(a, s). The resulting algorithm is known as REINFORCE. Secondly, so far we have assumed
that we can sample infinitely long trajectories. As such, we need to use N truncated trajectories
instead, each of length Tn. Putting this all together yields the (truncated) REINFORCE estimator:

∇θĴRE(θ) =
1

N

N−1∑
n=0

Tn∑
t=0

∇θ log π(at,n|st,n)Rt,n.

Is the estimator ∇θĴRE(θ) biased? Can you prove this?

Exercise 5. Problems with Policy Gradients.

As policy gradient methods render the reinforcement learning problem as an unconstrained gradient opti-
misation problem, they benefit from all of the convergence properties of stochastic gradient ascent methods
provided we can obtain unbiased estimates (see Bertsekas for a comprehensive overview). The stochastic
update for our policy parameters is:

θk+1 ← θk + αk∇θĴ(θ),

where αk is a step size, often chosen to satisfy the Robbins-Munro conditions
∑∞

k=0 αk =∞ and
∑∞

k=0 α
2
k <

∞ for convergence.

Policy gradient methods, however, have two major drawbacks. Firstly, they suffer from high variance;
for most RL problems, it is prohibitively costly to sample more than a few trajectories for an update,
especially if they are long enough to mitigate the effect of bias. Moreover, they only use a single return
for each trajectory; the rewards sampled for R0,n are used not just to estimate Qπ(a0,n, s0,n) ≈ R0,n, but
also the Q-function from each further timestep, i.e. Qπ(a1,n, s1,n) ≈ R1,n, Qπ(a2,n, s2,n) ≈ R2,n etc, so
the estimate of Qπ(s, a) itself at each timestep will have high variance as a result of only being a single
sample. This is further compounded by the fact that we would expect the distribution over states pθ(s|t)
to have high variance for most MDPs, especially as t >> 0, reflecting the fact that more probability mass
is spread over more of the state space as time progresses. This is mitigated somewhat by using discount
factors, but we must be careful not to make γ too small or else our optimal policies will become myopic
- that is, they become more concerned with maximising immediate rather than long term reward. In the
following exercises we explore how baselines can be used to reduce this variance.

(i) Show that for any bounded baseline b(s) : S → R, we can write the policy gradient from Eq. (3) as:∫
dπ(s)

∫
∇θπθ(a|s)Qπ(s, a)dads =

∫
dπ(s)

∫
∇θπθ(a|s)(Qπ(s, a)− b(s))dads.

Analysis by Greensmith shows that using the value function as a baseline b(s) = V π(s) := Eπ(a|s) [Qπ(s, a)]
yields almost the lowest possible variance. To see why, consider the advantage function Aπ(s) := Qπ(s)−
V π(s), so called because it gives an indication the advantage - i.e. how much better expected reward is for a
given action a relative to the average expected reward in that state. As a result, the policy gradient update

6

http://www.mit.edu/~dimitrib/Gradient.pdf
http://jmlr.csail.mit.edu/papers/volume5/greensmith04a/greensmith04a.pdf

will only be positive for Aπ(s) > 0, increasing the probability of better than average actions being selected
in the future. Conversely, when Aπ(s) < 0, our policy gradient is updated in a direction to decrease the
probability of worse than average actions.

The second major drawback for policy gradient methods is their sample inefficiency - that is their ability
to reuse samples in an efficient way. After we have carried out an update to the parameters, we throw
away all the data we have collected to compute that estimate and must re-sample N new trajectories.

A way to tackle both variance and sample inefficiency is to use a critic, giving rise to a family of algorithms
known as actor-critic; here we learn a Q-function approximation Qπ(s, a) ≈ Qω(s, a) and a value function
approximation V π(s) ≈ Vφ(s). In actor-critic methods, we carry out successive policy gradient and policy
evaluation steps. In the policy evaluation step, we update our value functions using any preferred evaluation
method such as TD, LSTD or residual methods.

(ii) Why do actor-critic methods have improved variance and sample efficiency?

Exercise 6. Implementing Actor-Critic.

We now implement an actor-critic algorithm and investigate exploration strategies. We use neural network
function approximators for Qω(s, a) and Vφ(s) to estimate the advantage Aω,φ(s, a) = Qω(s, a) − Vφ(s).
We also learn a neural network with parameters θ to output the state dependent mean and variance of
our policy, which is a tanh-Gaussian policy - effectively passing the actions sampled from a Gaussian
distribution through a tanh squashing function. Importantly, this distribution has support over a finite
action space.

Let’s go through algorithms.py in a bit more detail, as this is the only file where you’ll be writing your
own code. Firstly, the algorithm samples a step at time t from the Pendulum-v0 environment in the
function env step(), saving the tuple (si, ai, rt, si+1, terminal) to the repay buffer. The algorithm then
trains the networks using train score(); we first sample a random batch of 128 actions, rewards, states,
next states and terminal bools from the replay buffer. These take the form of 128 × 1 tensors and are
used to generate the variables required for training. We then generate the critic losses: we learn a value
function (self.vf) and action-value function (self.qf) using the TD-error with a few tricks to stabilise
learning (if you want to know more, please ask). We then generate the policy losses, which you will need
to implement. After all losses have been generated, we call backward() on each respectively and step the
optimiser to update the network parameters. There are 200 of these training steps per epoch. Finally, the
algorithm evaluates the performance of our policy on the Pendulum-V0 task in the function evaluate()

at the end of the training epoch, averaging across 5 × 200-step episodes. The pseudocode is shown below:

The file part ii.py runs the experiment for 5 different random seeds for 30 epochs and saves the data in
a .csv file locally. It also plots the mean average test return across the 5 seeds. If you find that you don’t
have enough time to run 5 trials, change the value of number of trials on line 18 to 3 (or less if you are
really pushed).

In continuous domains, it is often not sufficient to rely solely on the stochastic policy πθ(a|s) to generate
diverse enough samples to learn good policies. As a result, policies become too confident about sub-optimal
actions and converge too quickly. Other than using ε-greedy exploration, a slightly more sophisticated (and
effective) way to encourage exploration is to add an entropy term to the reinforcement learning objective,

7

Algorithm 1 Actor-Critic:

Initialize parameter vectors φ, φ̄, θ, ω, D ← {}
Fill buffer with 1000 initial samples
for each iteration do

for each environment step do
ai ∼ πq(a|s; θ)
si+1 ∼ p(si+1|si, ai)
D ← D ∪ {(si, ai, r(si, ai), si+1)}

end for
for each gradient step do

φ← φ− λV ∇̂φEsi∼D
[
(Vφ(si)− Eai∼πθ [Qω(si, ai)])

2
]

ω ← ω − λQ∇̂ωE(ht,rt,si+1)∼D

[(
rt + γVφ̄(si+1)−Qω(ht)

)2]
θ ← θ + λπqE(si,ai)∼D

[
∇θ
(

log πθ(a|s) (Aω(a, s)− log πθ(a|s))
)]

φ̄← τ φ̄+ (1− τ)φ̄
end for

end for

yielding,

J(θ) =

∫
p0(s)

∫
πθ(a|s) (Aω(a, s)− α log πθ(a|s)) dads, (4)

where α is a constant that controls the degree of entropy added to the objective. Choosing effective values
of α is an ongoing question in RL research, and we are often reduced to tuning it using hyperparameter
search. We use α = 1 for this practical.

Taking derivatives of Eq. (4) using the policy gradient theorem with the log-derivative trick then yields
the gradient update:

∇θJ(θ) ∝
∫
dπ(s)∇θ

∫
πθ(a|s) (Aω(a, s)− log πθ(a|s)) dads,

=Edπ(s)πθ(a|s)

[
∇θ
(

log πθ(a|s) (Aω(a, s)− log πθ(a|s))
)]
. (5)

(i) Why does the additional entropy term in Eq. (4) encourages exploration? Hint: What happens when
the policy is very confident about a particular action? What about when all actions have equal
probability?

(ii) Implement the score function gradient update with entropy as derived in Eq. (5) in the function
train score(), un-commenting line 173 to allow gradient updates to the policy. If it is implemented
correctly, you should start to see the average test return rise above -1000 for a least one epoch by 25
epochs of training. If the agent is training, remove the entropy term and test for 1 trial to show that
it doesn’t learn to improve it’s policy within 30 epochs. Then let it run for the full 5 trials with the
entropy term and move on to the next part while it completes (it should take around 20 minutes).

Hints:

• Use new q values instead of q values for Qω(a, s).

8

• The variables log pis, new q values and values have already been calculated for you for the
current batch.

• PyTorch’s detach() function stops gradient being passed through variables when backward()

is called.

• Remember, we are calculating a loss that PyTorch will minimise.

Exercise 7. Actor-Critic vs. Value Based Methods.

It is important to understand the advantages and disadvantages of actor-critic algorithms compared to
critic-only, value based algorithms such as Q-learning. Firstly, there is no inherent way to explore using
Q-learning; deterministic policies are always extracted from the Q-function and stochasticity must be con-
structed as part of the algorithm through a method such as ε-greedy exploration. In actor-critic methods,
non optimal policies are stochastic and so will induce an exploration strategy for the agent. Secondly,
convergence guarantees are limited, even when using simple function approximators for algorithms such as
Q-learning. A related issue occurs when the function approximator is biased, which we explore now:

(i) Q-learning has a major disadvantage when using function approximators; explain why finding the
deterministic policy π(a|s) = δ(a = arga′ maxQω(s, a)) may cause issues when the function approxi-
mator is biased.

(ii) The optimal Bellman operator presents a further compounding issue for several classes of non-linear
function approximators such as arbitrary neural networks in continuous domains. Can you think
what it is?

Bonus: Seeing your trained agent!

If you have time at the end, set number of trials to 1, save data to False and render agent to True

to see your trained playing with pendulum. See if you can explain why the agent’s learning curve always
dips first in training steps 0-1000 before climbing.

9

