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Partial observability

In a partially observable decision problem, the agent does not have
access to the true state of the environment

Instead agent receives only observations correlated with the state

There are two possible causes of partial observability:

1 Noisy sensors: many-to-many function mapping states to observations

2 Perceptual aliasing: many-to-one mapping
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Hallway example
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Partially observable Markov decision processes

POMDPs extend MDPs to model partial observability

Environment is stationary and possibly stochastic environment

A finite POMDP consists of:
I Discrete time t = 0, 1, 2, . . .

I A discrete set of states s ∈ S

I A discrete set of observations o ∈ O

I A discrete set of actions a ∈ A

I A transition model p(s ′|s, a): the probability of transitioning to state s ′

when the agent takes action a at state s

I An observation model p(o|s ′, a): the probability of receiving an
observation o after taking action a and landing in state s ′

I A reward function R : S × A 7→ IR, so that the agent receives reward
R(s, a) when it takes action a at state s

I A planning horizon, which can be infinite
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MDPs ⊂ POMDPs or POMDPs ⊂ MDPs?
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Tiger example (1)
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Tiger example (2)

S = {L,R}
A = {OL,OR, Li}
O = {HL,HR}
Transitions: state is static but opening resets

Rewards:
I Correct door: +10
I Wrong door: −100
I Listen: −1

Observations: correct 85% of the time:
I p(HL|L, Li) = 0.85
I p(HR|L, Li) = 0.15
I p(HL|R, Li) = 0.15
I p(HR|R, Li) = 0.85
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Heuristic approaches

Without Markov property, reactive policies are suboptimal

Can sometimes settle for them anyway

Or condition actions on:
I Entire history
I A fixed window of history
I An engineered subset of history
I An engineered higher-level observation
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Beliefs (1)

Principled approaches formalise uncertainty about the state

A belief is a probability distribution over states, conditioned on what
the agent has observed: b(s) = p(s)
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Beliefs (2)

Updating the belief requires knowledge of b, T , and O

Start from Bayes rule:

p(A|B) =
p(A,B)

p(B)
=

p(B|A)p(A)

p(B)

In our case:

p(s ′|o) =
p(o|s ′)p(s ′)

p(o)

Adding other givens:

p(s ′|o, a, b) =
p(o|s ′, a, b)p(s ′|a, b)

p(o|a, b)
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Beliefs (3)

Expanding p(s ′|a, b):

b′(s ′) =
p(o|a, s ′)

∑
s p(s ′|s, a)b(s)

p(o|a, b)

Where:

p(o|a, b) =
∑
s′

p(o|a, s ′)
∑
s

p(s ′|s, a)b(s)
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Beliefs (4)
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Most likely state

Solve underlying MDP

Condition actions on most likely state

πMLS = arg max
a

Q(sML, a)

where:

sML = arg max
s

b(s)
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QMDP

Solve underlying MDP, select action with best expected value:

πQMDP = arg max
a

Q(b, a)

where:

Q(b, a) =
∑
s

Q(s, a)b(s)

Suppose b(s1) = 0.75, b(s2) = 0.25, and Q(s, a) is:

s1 s2
a1 100 100

a2 101 0

Will most likely state or QMDP yield a higher expected return?
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Belief MDPs

Belief is a sufficient statistic for history

Therefore, we can define a belief MDP:

I States are beliefs in the POMDP: sBMDP = b(sPOMDP)

I Rewards are expectations wrt b: R(b, a) =
∑

s b(s)R(s, a)

I Belief update happens in environment: p(b′|bt , at , ot) = 1 iff b′ = bt+1

Automatically balance reward and information gathering

Belief MDP has continuous state: belief vector has length |SPOMDP |

Fortunately, the value function is piecewise-linear and convex

What prevents convenient delusions?
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Policy trees
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POMDP value functions
Value function of t-step policy tree π:

V π(s) = R(s, a) + γ
∑
s′

p(s ′|s, aπ)
∑
o

p(o|s ′, πa)V πo (s ′)

where πo is the (t − 1)-step policy subtree of π associated with o

But we need value functions over beliefs, not states:

V π(b) =
∑
s∈S

b(s)V π(s)

For compactness, we write the state-value function as an α-vector
απ = 〈Vπ(s1), . . . ,Vπ(s|S |)〉 such that:

V π(b) = b · απ

The optimal value function is thus:

V ∗(b) = max
π

b · απ
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Piecewise-linear convex value functions
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POMDP action selection
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Dominated policy trees
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POMDP value functions in 3D
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POMDP planning

Value iteration [Sondik 1971, Monahan 1982]

I Given set Πt−1 of undominated (t − 1)-step policy trees

I Construct all |A||Πt−1||O| t-step policy trees by extension

I Prune dominated policy trees to form Πt

Faster: linear support [Chang 1988] & Witness [Cassandra et al. 1997]

Approximate: point-based value iteration [Pineau et al. 2003]

More scalable: on-line POMDP planning [Ross et al. 2008]
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Infinite horizon planning
Infinite horizon POMDP planning is undecidable!

Optimal value function may have infinite facets

Finite horizon planning may still converge for large t

Yields finite state machine, e.g., infinite horizon tiger for b0 = 0.5, 0.5:
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Bayes-optimal reinforcement learning

Problem of learning in an MDP is cast as one of planning in a
POMDP where the hidden state corresponds to the unknown model
parameters: sPOMDP = (sMDP ,T ,R)

Like any other POMDP, this POMDP can be treated like a belief
MDP: sBMDP = b(sPOMDP)

However, since sMDP is directly observed, only a belief over T and R
is necessary, thus:

sBMDP = b(sPOMDP) = b(sMDP ,T ,R) = (sMDP , b(T ,R))
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DRQN [Hausknecht & Stone 2015]
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Deep Variational RL [Igl et al. 2018]
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VariBAD [Zintgraf et al. 2019]

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 11, 2020 27 / 59



Multi-Agent Paradigm
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Multi-Agent Systems are Everywhere
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Types of Multi-Agent Systems

Cooperative:
I Shared team reward
I Coordination problem

Competitive:
I Zero-sum games
I Individual opposing rewards
I Minimax equilibria

Mixed:
I General-sum games
I Nash equilibria
I What is the question? [Shoham et al. 2007]
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Coordination Problems are Everywhere
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Setting

Multi-agent! Partially 
Observable!

Decentralised 
Execution!

Cooperative!

Centralised 
Learning!

(Figure by Jakob Foerster)

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 11, 2020 32 / 59



Multi-Agent MDP

All agents see the global state s

Individual actions: ua ∈ U

State transitions: P(s ′|s,u) : S ×U× S → [0, 1]

Shared team reward: r(s,u) : S ×U→ R

Equivalent to an MDP with a factored action space

Shimon Whiteson (Oxford) Intro to Reinforcement Learning November 11, 2020 33 / 59



Dec-POMDP

Observation function: O(s, a) : S × A→ Z

Action-observation history: τ a ∈ T ≡ (Z × U)∗

Decentralised policies: πa(ua|τ a) : T × U → [0, 1]

Natural decentralisation: communication and sensory constraints

Artificial decentralisation: improve tractability

Centralised learning of decentralised policies
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The Predictability / Exploitation Dilemma

Exploitation:

I Maximising performance requires collecting reward

I In a single-agent setting, this requires exploiting observations

Predictability:

I Dec-POMDP agents cannot explicitly communicate

I Coordination requires predictability:“stick to the plan!”

I Predictability can require ignoring private information

When does the benefit of exploiting private
observations outweigh the cost in predictability?
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Independent Learning

Independent Q-learning [Tan 1993]
I Each agent learns independently with its own Q-function
I Treats other agents as part of the environment

Independent actor-critic [Foerster et al. 2018]
I Each agent learns independently with its own actor-critic
I Treats other agents as part of the environment

Speed learning with parameter sharing
I Different inputs, including a, induce different behaviour
I Still independent: value functions condition only on τ a and ua

Limitations:
I Nonstationary learning
I Hard to learn to coordinate
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Centralised Critics [Lowe et al. 2017; Foerster et al. 2018]

Centralised V (s, τ ) or Q(s, τ ,u)→ hard greedification → actor-critic

critic A2
t

st      rt   
o2

t 

h2

o1
t 

h1

(h1, ) 
A1

t

u1
t 

u1
t 

u2
t 

u2
t 

(h2, ) 

actor 2actor 1

environment
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Factored Joint Value Functions

Factored value functions [Guestrin et al. 2003] can improve scalability:

Qtot(τ ,u;θ) =
E∑

e=1

Qe(τ e ,ue ; θe)

where each e indicates a subset of the agents

a1 a2 a3

Q1 Q2
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Value Decomposition Networks [Sunehag et al., 2017]

Most extreme factorisation: one per agent:

Qtot(τ ,u;θ) =
N∑

a=1

Qa(τ a, ua; θa)

a1 a2 a3

Q1 Q2 Q3
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Decentralisability

Added benefit of decentralising the max and arg max:

max
u

Qtot(τ ,u;θ) =
∑

max
ua

Qa(τ a, ua; θa)

arg max
u

Qtot(τ ,u;θ) =

arg maxu1 Q1(τ1, u1; θ1)
...

arg maxun Qn(τn, un; θn)



No more hard greedification =⇒ Q-learning, not actor-critic:

L(θ) =
b∑

i=1

[(
y toti − Qtot(τ ,u;θ)

)2]
,

y toti = ri + γmax
u′

Qtot(τ
′
i ,u
′;θ−)
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QMIX’s Monotonicity Constraint

To decentralise max / arg max, it suffices to enforce: ∂Qtot
∂Qa
≥ 0, ∀a ∈ A
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Representational Capacity

It’ll never work: monotonic mixing still  

can’t capture the benefit of coordination

linear &
monotonic

nonlinear &
monotonic

nonlinear &
nonmonotonic

VDN & QMIX Just QMIX Neither
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Bootstrapping

It matters because of bootstrapping

L(θ) =
b∑

i=1

[(
y toti − Qtot(τ ,u, s;θ)

)2]
,

y toti = ri + γmax
u′

Qtot(τ
′
i ,u
′, s ′;θ−)
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Two-Step Game
A B

A 2A 2A

B 2B 2B

State 1

A B

A 7 7

B 7 7

State 2A

A B

A 0 1

B 1 8

State 2B
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Two-Step Game Results

A B

A 7 7

B 8 8

A B

A 7 7

B 7 7

A B

A 0 1

B 1 8

A B

A 6.93 6.93

B 7.92 7.92

State 1

A B

A 7.00 7.00

B 7.00 7.00

State 2A

A B

A 0.00 1.00

B 1.00 8.00

State 2B

A B

A 6.94 6.94

B 6.35 6.36

A B

A 6.99 7.02

B 6.99 7.02

A B

A -1.87 2.31

B 2.33 6.51

Ground

Truth

VDN

QMIX
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QMIX [Rashid et al. 2018]

Agent network: represents Qi (τ
a, ua; θa)

Mixing network: represents Qtot(τ ) using nonnegative weights

Hypernetwork: generates weights of hypernetwork based on global s
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Random Matrix Games (The Students Were Right)
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StarCraft Multi-Agent Challenge (SMAC)
[Samvelyan et al. 2019]

https://github.com/oxwhirl/smac

https://github.com/oxwhirl/pymarl
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Partial Observability in SMAC

Cyan = sight range Red = shooting range
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SMAC Maps

Name Ally Units Enemy Units

2s3z 2 Stalkers & 3 Zealots 2 Stalkers & 3 Zealots
3s5z 3 Stalkers & 5 Zealots 3 Stalkers & 5 Zealots
1c3s5z 1 Colossus, 3 Stalkers & 5 Zealots 1 Colossus, 3 Stalkers & 5 Zealots

5m vs 6m 5 Marines 6 Marines
10m vs 11m 10 Marines 11 Marines
27m vs 30m 27 Marines 30 Marines
3s5z vs 3s6z 3 Stalkers & 5 Zealots 3 Stalkers & 6 Zealots

MMM2 1 Medivac, 2 Marauders & 7 Marines 1 Medivac, 3 Marauders & 8 Marines

2s vs 1sc 2 Stalkers 1 Spine Crawler
3s vs 5z 3 Stalkers 5 Zealots
6h vs 8z 6 Hydralisks 8 Zealots

bane vs bane 20 Zerglings & 4 Banelings 20 Zerglings & 4 Banelings
2c vs 64zg 2 Colossi 64 Zerglings
corridor 6 Zealots 24 Zerglings
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Overall Results (The Students Were Right)
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State Ablations
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Linear Ablations
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Learned Mixing Functions (2c vs 64zg)

t = 0 t = 50
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Multi-Layer Linear Mixing (Regression)
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Multi-Layer Linear Mixing (SMAC)
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Tanh Activation

t = 0 t = 50
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QMIX Takeaways

Value function factorisation is crucial

Flexible conditioning on central state is crucial

Richly parameterised mixing is crucial

Nonlinear mixing is not crucial (on SMAC)
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Whiteson Research Lab
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